Кантовский сборник

2016 Выпуск №1(55)

Системность КЧР и система Канта (III)

Аннотация

Продолжается анализ системности «Критики чистого разума» как текста, обеспечивающего целостность всей философской системы Канта. В развитие идей 1-й и 2-й частей работы в данной, 3-й, части рассматривается отношение понятийной сферы и сферы реальности. Понятия делятся у Канта на phaenomena и noumena. Первые — понятия чувственно данных явлений, вторые же — понятия, выражающие вещи в себе. Показывается, что noumena как понятия о вещах в себе делятся на содержательные и пустые. Содержательным ноуменам соответствуют трансцендентальные предметы как объекты возможного опыта, ставшего и могущего потенциально стать действительным, с одной стороны, а с другой — им соответствуют абстрактные отношения-идеализации, которые, будучи нормами и ценностями, имманентны миру явлений и участвуют в организации этого мира.

Abstract

This article continues to analyse the systemacity of the CPR as a text ensuring the integrity of Kant’s philosophical system. Following the ideas presented in the first two parts of this work, part three considers the correlation between the spheres of concepts and reality. Kant divides concepts into phaenomena and noumena. The former are apprehended by the senses and the latter express the things-in-themselves. It is shown that, as concepts of things, noumena are divided into substan tial and empty ones. Substantial noumena correspond to transcendental objects as the material of possible experience, which has become or can become actual, on the one hand. On the other, they correspond to abstract idealisation relations – norms and values – that are immanent in the world of phenomena and contribute to the organisation of that world.

Скачать статью

Трансцендентальный анализ математики: конструктивный характер математической деятельности

Аннотация

Трансцендентальная философия Канта нацелена на исследование как человеческого способа познания в целом (В 25), так и отдельных видов нашего познания с целью обоснования их объективной значимости. Задачей данной статьи является экспликации кантовского понимания математического (по)знания как «конструирования [конструкции из] понятий» (см.: «конструировать понятие — значит показать априори соответствующее ему созерцание» (A 713/В 741)), основательность которой «зиждется на дефинициях, аксиомах и демонстрациях» (A 726/В 754). Математические предметы в отличие от конкретных «физических» имеют абстрактный характер и вводятся посредством принципа абстракции Юма — Фреге. Кант на основе своего учения о схематизме развивает оригинальную концепцию абстракции: кантовские схемы выступают как способы построения (конструирования) математических предметов, как «действия чистого мышления» (В 81). Конструктивное понимание математической деятельности, восходящее к генетическому методу Евклида, стало важной новацией Канта и лежит в основе современного математического формализма, интуиционизма и конструктивизма. В рамках кантовского конструктивизма математику можно представить как двухуровневую систему познания, что предполагает первоначальный «спуск» с уровня рассудочных понятий на уровень чувственных созерцаний, где собственно и осуществляются математические действия, и обратный «подъем» наверх. На этой основе мы развиваем концепцию трансцендентального конструктивизма (прагматизма). В частности, кантовскую «созерцательность» математики можно понимать как ее структурность и говорить о «логическом пространстве» (Витгенштейн; ср. со структуралистским пониманием математики). Кант выделяет два типа конструирования: остенсивное (геометрия) и символическое (алгебра). Анализируется каждый из этих типов конструирования и показывается, что современные математические построения (конструкции) представляют сочетание и переплетение обоих типов конструирования, а также выделяется третий тип — логическое конструирование (при доказательстве теорем ), который наследует черты обоих типов кантовского конструирования.

Abstract

Kant’s transcendental philosophy (transcendentalism) focuses on both the human method of cognition in general [CPR, B 25] and certain types of cognition aimed at justifying their objective significance. This article aims to explicate Kant’s understanding (resp. justification) of the abstract nature of mathematical knowledge (cognition) as the “construction of concepts in intuition” (see: “to construct a concept means to exhibit a priori the intuition corresponding to it”; [CPR, A 713/В 741], which is “thoroughly grounded on definitions, axioms, and demonstrations” [CPR, A 726/В 754]. Unlike specific ‘physical’ objects, mathematical objects are of abstract nature and they are introduced using Hume’s principle of abstraction. Based on the doctrine of schematism, Kant develops an original theory of abstraction: Kant’s schemes serve as a means to construct mathematical objects, as an “action of pure thought" [CPR, B 81]. A ‘constructive’ understanding of mathematical acts going back to Euclid’s genetic method is an important innovation introduced by Kant. This understanding is at the heart of modern mathematical formalism, intuitionism, and constructivism. Within Kant’s constructivism, mathematics can be described as a two-tier system, which suggests a “shift” from the level of concepts of the understanding to the level of sensual intuition, where mathematical acts are performed, followed by a subsequent return to the initial level. On this basis, the author develops a theory of transcendental constructivism (pragmatism). In particular, Kant's ‘intuitionism’ of mathematics can be understood as structural properties of mathematical language or its ‘logical space’ (Wittgenstein; cf. mathematical structuralism). In his theory, Kant distinguishes between two types of constructing — ostensive (geometric) and symbolic (algebraic). The paper analyses these types and shows that modern mathematical structures are a combination and intertwining of both. The author also identifies a third type — logical constructing [in proving theorems], which inherits the features of both Kant's types.

Скачать статью