Кант, Гёдель и проблема синтетических суждений априори
АннотацияСпоры вокруг знаменитого положения Канта о существовании априорных синтетических суждений в математике, выдвинутого им в «Критике чистого разума», не утихают на протяжении более двух столетий. С одной стороны, это положение подверглось резкой критике приверженцев неопозитивизма в начале ХХ века. С другой — идеи Канта о конструктивной природе математики послужили философской основой программы интуиционизма Л. Э. Я. Брауэра в основаниях математики. Небезынтересными в данном вопросе оказываются идеи великого логика и математика Курта Гёделя об аналитичности математики, высказанные им в ряде работ, посвященных философии математики. Хотя он нигде и не упоминает априорные синтетические суждения, ход его размышлений об аналитических суждениях близок к кантовскому. Примечательным является и то, что уже в середине прошлого века теоремы Гёделя о неполноте, а также работы Чёрча и Тьюнинга, с ними связанные, послужили аргументами в защиту существования синтетических суждений априори. Первым, кто прибегнул для этого к помощи теоремы Гёделя о неполноте, стал американский логик Ирвинг Копи. Хотя его небольшая работа осталась практически не замеченной, подобные идеи высказывались еще как минимум двумя математиками. В современной математике, в частности в теории типов Мартина-Лёфа, существование априорных синтетических истин считается вполне оправданным, хотя и по другим основаниям, но тоже связанным с гёделевыми результатами. Проведенный анализ обоснований в пользу существования априорных синтетических высказываний демонстрирует то, что решение этой проблемы зависит от явно или неявно принимаемого образа логики, ключевым параметром которого, по нашему мнению, является предмет логики или, иначе говоря, представления о природе логического и, соответственно, о границах логики и математики.