Кантовский сборник

2015 Выпуск №2(52)

Трансцендентальный анализ математики: абстрактная природа математического знания

Аннотация

Трансцендентальная философия (трансцендентализм) Канта нацелена на исследование как человеческого способа познания в целом (В 25), так и отдельных видов нашего познания с целью обоснования их объективной значимости. Задачей данной статьи стала экспликации кантовского понимания (resp. обоснования) абстрактного характера математического знания (познания) как «конструирования [из] понятий» (см.: «конструировать понятие — значит показать a priori соответствующее ему созерцание»; (A713/В 741)), основательность которой «зиждется на дефинициях, аксиомах и демонстрациях» (A726/В 754). Математические предметы, в отличие от конкретных «физических», имеют абстрактный характер (a-объекты vs. the-объекты) и вводятся (задаются) посредством принципа абстракции Юма — Фреге. Кант на основе своего учения о схематизме развивает оригинальную концепцию абстракции: кантовские схемы выступают как способы построения (конструирования) математических предметов, как «действия чистого мышления» (В 81). Исследуется онтологический статус математических абстракций и выделяется три возможных онтологии — понимание математических предметов/абстракций: 1) как полноценных предметов (вещная онтология; «полнокровный платонизм»); 2) как субстантивированного набора свойств (онтология свойств; Э. Залта); 3) как отношений (реляционная онтология; теория категорий, структурализм).

Скачать статью