Кант и новая математика сто лет спустя :: Единая Редакция научных журналов БФУ им. И. Канта

×

Ваш логин
Зарегистрироваться
Пароль
Забыли свой пароль?
Войти как пользователь:
Войти как пользователь
Вы можете войти на сайт, если вы зарегистрированы на одном из этих сервисов:
   
Моя вера – это вера в то, что счастье человечеству даст прогресс науки
Иван Петрович Павлов

DOI-генератор Поиск по DOI на Crossref.org

Кант и новая математика сто лет спустя

Автор Родин А
DOI 10.5922/0207-6918-2015-1-1
Страницы/Pages 7-16
Статья Загрузить
Ключевые слова Кассирер, Рассел, философия математики, формальная логика, предметное знание, теория категорий.
Keywords Cassirer, Russell, philosophy of mathematics, formal logic, object-based knowledge, Category theory.
Аннотация Критика Кассирером философии математики Рассела и неокантианская философия науки и математики в целом приобретают особую актуальность в контексте современной математики и математической физики. То обстоятельство, что современная стандартная аксиоматическая архитектура математических теорий не учитывает предметного характера математического знания, на которое вслед за Кантом указывает Кассирер, затрудняет использование новых математических знаний в естественных науках и технике. В частности, в этом может состоять одна из причин того, что физическая теория струн в ее современном виде оказывается принципиально недоступной для опытной проверки, поскольку ее можно согласовать практически с любыми возможными результатами наблюдений и экспериментов. Однако есть основания считать, что некоторые новейшие подходы в основаниях математики, включая теорию категорий, теорию топосов и «унивалентные основания», могут позволить исправить этот недостаток в обозримом будущем. Проблема использования в естественных науках и в технике новых математических знаний показывает, что кантианский подход в философии математики остается по крайней мере частично релевантным современному состоянию этой науки.
Abstract (summary) Cassirer’s critique of Russell’s philosophy of mathematics and the Neo-Kantian philosophy of science and mathematics as a whole is of special relevance in the context of modern mathematics and mathematical physics. The fact that the modern standard axiomatic architecture of mathematical theories does not take into account the object-based character of mathematical knowledge, which was stressed after Kant by Cassirer, complicates the application of new mathematical theories in natural sciences and technology. In particular, this can explain why modern physical string theory is empirically unverifiable; it can be adjusted to accommodate a wide range of possible outcomes of observations and experiments. At the same time, there are reasons to believe that certain recent ap-proaches in foundations of mathematics such as category theory, topos theory, and Univalent Foundations may help to improve the situation in the near future. The problem of applicability of new mathematical knowledge in science and technology shows that the Kantian approach in phi-losophy of mathematics is at least partly relevant to today’s mathematics.
Список литературы 1.    Арнольд В. И. О преподавании математики // Успехи математических наук 1998. № 1 (53). С. 229—234.
2.    Бонола Р. Неевклидова геометрия. М., 2010.
3.    Кантор Г. Основы общего учения о многообразиях // Труды по теории множеств. М., 1985. С. 63—106.
4.    Родин А. Программный реализм в физике и основания математики // Вопросы философии. 2015. № 4—5 (в печати).
5.    Родин А. Теория категорий и поиск новых математических оснований физики // Вопросы философии. 2010. № 6. С. 67—82.
6.    Cassirer E. Kant und die moderne Mathematik // Kant-Studien. 1907. № 12. S. 1—40.
7.    Friedman M. Ernst Cassirer and Contemporary Philosophy of Science // Angelaki. 2005. № 10. P. 119—128.
8.    Friedman M. Kant and the Exact Sciences. Cambridge, 1992.
9.    Heis J. Ernst Cassirer's Neo-Kantian Philosophy of Geometry // British Journal for the History of Philosophy. 2011. № 4(19). P. 759—794.
10.    Heis J. “Critical philosophy begins at the very point where logistic leaves off”: Cassirer’s Response to Frege and Russell // Perspectives on Science. 2010. № 4(18).
P. 383—408.
11.    Jonson A. K. Neo-Kantianism // Internet Encyclopedia of Philosophy. URL: http://www.iep.utm. edu/neo-kant/ (дата обращения: 19.01.2015).
12.    Pulkkinen J. Thought and Logic: The Debates Between German-Speaking Philoso-phers and Symbolic Logicians at the Turn of the 20th Century. P. Lang, 2005.
13.    Rheinberger H.-J. On Historicizing Epistemology. Stanford University Press, 2010.
14.    Rodin A. Axiomatic Method and Category Theory // Synthese Library. Springer, 2014. Vol. 364.
15.    Russell B. Principles of Mathematics. L., 1903.
16.    Russell B. A Critical Exposition of the Philosophy of Leibniz. L. ; N. Y., 1996.
17.    Schreiber U. Classical field theory via Cohesive homotopy types. arXiv:1311.1172 (2013) (дата обращения: 19.01.2015).
18.    Smolin L. The Trouble With Physics. Houghton Mifflin Harcourt, 2006.
19.    Voevodsky V. et al. Homotopy Type Theory: Univalent Foundations of Mathemat-ics. Princeton, 2013.
20.    Wigner E. The unreasonable effectiveness of mathematics in the natural sciences // Commun. Pure Appl. Math. 1960. № 13. P. 1—14.
Reference 1. Arnold V. I., 1998, O prepodavanii matematiki [On Mathematical Teaching] // Us-pekhi matematicheskih nauk [Advances of Mathematical Sciences] 53:1. p. 229—234. 2. Bonola R., 2010, Neevklidova geometrija [Non-Euclidean Geomtry], Moscow. 3. Cantor G., 1985, Osnovy obschego utchenija o mnogoobrazijakh [Foundations of a General Theory of Manifolds] // Trudy po teorii mnozhestv [Works in Set theory], Moscow, р. 63—106. 4. Rodin A., 2015, Programnyi realizm v fisike i osnovanija matematiki [Programmatic Realism in Physics and foundations of Mathematics] // Voprosy Filosofii [Questions in Philosophy]. 2015, № 4—5 (in print). 5. Rodin A., 2010, Teorija kategorii i poisk novykh matematicheskikh osnovanii fisiki [Category Theory and the Quest for New Mathematical Foundations of Physics] // Vo¬prosy Filosofii [Questions in Philosophy]. 2010, № 6, р. 67—82. 6. Cassirer E., 1907, Kant und die moderne mathematic // Kant-Studien, 12 (1907), S. 1—40. 7. Friedman M., 2005, Ernst Cassirer and Contemporary Philosophy of Science // Angelaki, 10 (2005), р. 119—128. 8. Friedman M., 1992, Kant and the Exact Sciences, Cambridge. 9. Heis J., 2011, Ernst Cassirer's Neo-Kantian Philosophy of Geometry // British Journal for the History of Philosophy, 19:4 (2011), р. 759—794. 10. Heis J., 2010, “Critical philosophy begins at the very point where logistic leaves off”: Cassirer’s Response to Frege and Russell // Perspectives on Science, 18:4 (2010), p. 383—408. 11. Jonson A. K., 2015, Neo-Kantianism, Internet Encyclopedia of Philosophy, URL: http://www.iep.utm.edu/neo-kant/ (seen 19.01.2015). 12. Pulkkinen J., 2005, Thought and Logic: The Debates Between German-Speaking Phi-losophers and Symbolic Logicians at the Turn of the 20th Century, P. Lang. 13. Rheinberger H.-J., 2010, On Historicizing Epistemology. Stanford. 14. Rodin A., 2014, Axiomatic Method and Category Theory (Synthese Library vol. 364), Springer. 15. Russell B., 1903, Principles of Mathematics, London. 16. Russell B., 1996, A Critical Exposition of the Philosophy of Leibniz, London and New York. 17. Schreiber U., 2015, Classical field theory via Cohesive homotopy types, arXiv:1311.1172 (2013) (seen 19.01.2015). 18. Smolin L., 2006, The Trouble With Physics, Houghton Mifflin Harcourt. 19. Voevodsky V. et al., 2013, Homotopy Type Theory: Univalent Foundations of Mathe-matics. Institute for Advanced Studies (Princeton). 20. Wigner E., 1960, The unreasonable effectiveness of mathematics in the natural sciences // Commun. Pure Appl. Math. 13, р. 1—14.

Назад в раздел