Дифференциальная геометрия многообразий фигур

# Текущий выпуск

### Дифференцируемое отображение, порожденное комплексами эллиптических параболоидов

DOI
10.5922/0321-4796-2020-51-9
Страницы / Pages
76-80

#### Аннотация

В трехмерном эквиаффинном пространстве расс­мат­ривается дифференцируемое отображение, порож­ден­ное комплексами эллиптических параболоидов. Гео­ме­трически охарактеризованы индикатриса и главное на­правление исследуемого отображения.

#### Abstract

In three-dimensional equiaffine space, we consider a differentiable map generated by complexes with three-parameter families of elliptic paraboloids according to the method proposed by the author in the mate­rials of the international scientific conference on geometry and applica­tions in Bulgaria in 1986, as well as in works published earlier in the sci­entific collection of Differ. Geom. Mnogoobr. Figur. The study is carried out in the canonical frame, the vertex of which coincides with the top of the generating element of the manifold, the first two coordinate vectors are conjugate and lie in the tangent plane of the elliptic paraboloid at its vertex, the third coordinate vector is directed along the main diameter of the generating element so that the ends are, respectively, the sums of the first and third, and also the sums of the second and third coordinate vec­tors lay on a paraboloid, while the indicatrixes of all three coordinate vec­tors describe lines with tangents, parallel to the first coordinate vector. The existence theorem of the mapping under study is proved, according to which it exists and is determined with the arbitrariness of one function of one argument. The systems of equations of the indicatrix and the main directions of the mapping under consideration are obtained. The indicatrix and the cone of the main directions of the indicated mapping are geomet­rically characterized.

#### Список литературы

1. Виноградова Н. В., Кретов М. В. Комплексы эллиптических параболоидов // ДГМФ. Калининград, 2010. Вып. 41. С. 35—38.
2. Малаховский В. С., Махоркин В. В. Дифференциальная геомет­рия многообразий гиперквадрик в n-мерном проективном простран­стве // Тр. Геом. семин. / ВИНИТИ. 1974. Т. 6. С. 113—134.
3. Кретов М. В. Дифференцируемые отображения, ассоцииро­ванные с многообразиями гиперквадрик // Междунар. конф. по гео­метрии и приложениям. Смолян, 1986. С. 23.
4. Кретов М. В. О подклассах дифференцируемого отображения, порожденного комплексами гиперквадрик // ДГМФ. Калининград, 2010. Вып. 41. С. 70—74.
5. Малаховский В. С. Введение в теорию внешних форм. Кали­нин­град, 1978.
6. Кретов М. В. О главных точках дифференцируемых отобра­жений, ассоциированных с комплексами гиперквадрик // ДГМФ. Ка­ли­нинград, 2006. Вып. 37. С. 51—58.

#### Reference

1. Vinogradova, N. V., Kretov, M. V.: Complexes of elliptic parabo­loids. DGMF. Kaliningrad. 41, 35—38 (2010).
2. Malakhovsky, V. S., Makhorkin, V. V.: Differential geometry of manifolds of hyperquadrics in n-dimensional projective space. Tr. Geom. Sem., 6, 113—134 (1974).
3. Kretov, M. V.: Differentiable mappings associated with hyperquad­ric varieties. International Conference on Geometry and Applications. Smolyan. P. 23 (1986).
4. Kretov, M. V.: On subclasses of a differentiable map generated by complexes of hyperquadrics. DGMF. Kaliningrad. 41, 70—74 (2010).
5. Malakhovsky, V. S.: Introduction to the theory of external forms. Kaliningrad (1978).
6. Kretov, M. V.: On the main points of differentiable mappings asso­ciated with complexes of hyperquadrics. DGMF. Kaliningrad. 37, 51—58 (2006).