Дифференциальная геометрия многообразий фигур

Текущий выпуск

Назад к списку Скачать статью

О 6-мерных AH-подмногообразиях класса W1⊕W2⊕W4 алгебры Кэли

DOI
10.5922/0321-4796-2020-51-1
Страницы / Pages
7-13

Аннотация

Установлено, что 6-мерное W1⊕W2⊕W4-подмногообразие алгебры октав, через каждую точку которого проходит гиперповерхность с квазисасакиевой структурой, является почти келеровым многообразием.

Abstract

Six-dimensional submanifolds of Cayley algebra equipped with an almost Hermitian structure of class W1 W2 W4 defined by means of three-fold vector cross products are considered. As it is known, the class W1 W2 W4 contains all Kählerian, nearly Kählerian, almost Kählerian, locally conformal Kählerian, quasi-Kählerian and Vaisman — Gray manifolds. The Cartan structural equations of the W1 W2 W4 -structure on such six-dimensional submanifolds of the octave algebra are obtained. A criterion in terms of the configuration tensor for an arbitrary almost Hermitian structure on a six-dimensional submanifold of Cayley algebra to belong to the W1 W2 W4 -class is established. It is proved that if a six-dimensional W1 W2 W4 -submanifold of Cayley algebra satisfies the quasi-Sasakian hypersurfaces axiom (i.e. a hypersurface with a quasi-Sasakian structure passes through every point of such submanifold), then it is an almost Kählerian manifold. It is also proved that a six-dimensional W1 W2 W4 -submanifold of Cayley algebra satisfies the eta-quasi-umbilical quasi-Sasakian hypersurfaces axiom, then it is a Kählerian manifold.

Список литературы

1.  Gray A., Hervella L. M. The sixteen classes of almost Hermitian manifolds and their linear invariants // Ann. Mat. Pura Appl. 1980. Vol. 123, № 4. P. 35—58.
2.  Кириченко В. Ф. Дифференциально-геометрические структуры на многообразиях. Одесса, 2013.
3.  Gray A. Six-dimensional almost complex manifolds defined by means of three-fold vector cross products // Tôhoku Math. J. 1969. Vol. 1. P. 614—620.
4.  Кириченко В. Ф. Классификация келеровых структур, индуци­рованных 3-векторными произведениями на 6-мерных подмногооб­разиях алгебры Кэли // Изв. вузов. Математика. 1980. № 8. C. 32—38.
5.  Банару М. Б. Эрмитова геометрия 6-мерных подмногообразий алгебры Кэли : дис. … канд. физ.-мат. наук. М., 1993.
6.  Banaru M. B., Banaru G. A. A note on six-dimensional planar Her­mitian submanifolds of Cayley algebra // Известия Академии наук Рес­публики Молдова. Математика. 2014. № 1 (74). P. 23—32.
7.  Banaru M. B. Geometry of 6-dimensional Hermitian manifolds of the octave algebra // Journal of Mathematical Sciences (New York). 2015. Vol. 207, № 3. P. 354—388.
8.  Степанова Л. В. Контактная геометрия гиперповерхностей квазикелеровых многообразий : дис. … канд. физ.-мат. наук. М., 1995.

Reference

1. Gray, A., Hervella, L.M.: The sixteen classes of almost Hermitian
manifolds and their linear invariants. Ann. Mat. Pura Appl., 123:4, 35—58
(1980).
2. Kirichenko, V.F.: Differential-geometric structures on manifolds.
Odessa (2013).
3. Gray, A.: Six-dimensional almost complex manifolds defined by
means of three-fold vector cross products. Tôhoku Math. J., 21, 614—620
(1969).
4. Kirichenko, V.F.: Classification of Kählerian structures, defined by
means of three-fold vector cross products on six-dimensional submanifolds of Cayley algebra. Izvestia Vuzov. Math., 8, 32—38 (1980).
5. Banaru, M.B.: Hermitian geometry of 6-dimensional submanifolds
of Cayley algebra. PhD thesis. Moscow (1993).
6. Banaru, M. B., Banaru, G. A.: A note on six-dimensional planar
Hermitian submanifolds of Cayley algebra. Buletinul Academiei Ştiinţe a
Republicii Moldova. Matematica, 1 (74), 23—32 (2014).
7. Banaru, M. B.: Geometry of 6-dimensional Hermitian manifolds of
the octave algebra. J. Math. Sci. (New York), 207:3, 354—388 (2015).
8. Stepanova, L.V.: Contact geometry of hypersurfaces of quasiKählerian manifolds. PhD thesis. Moscow (1995).