Differential Geometry of Manifolds

Current issue

Back to the list Download the article

A geometric model of linear fractional transformations

DOI
10.5922/0321-4796-2022-53-8
Pages
84-93

Abstract

A model of linear fractional transformations of the complex plane in the form of points of the complex three-dimensional projective space without a linear “forbidden” quadric is presented. A model of real linear fractional transformations of the complex plane in the form of points of the real three-di­mensional projective space without a linear “forbidden” quadric is presented. A geometric separation of points corresponding to parabolic, hyperbolic and elliptic real linear fractional transformations by a “parabolic” cone touching the forbidden quadric is found. Some pro­per­ties of model points corresponding to real linear fractional transfor­ma­tions are found. Some properties of model points corresponding to fun­da­men­tal groups transformations of biconnected domains of the complex pla­ne are found.

Reference

1. Stoilow, S.: Teoria funcţiilor de o variabilǎ complex. Vol. 1. No­ţiuni şi principii fundamentale. Editura Academiei Republicii Populare Ro­mâne (1954).

2. Markushevich, A. I.: Theory of Analytic Functions. Vol. 1. Begin­ning of theory. Moscow (1967).

3. Evgrafov, M. A.: Analytic Functions. Moscow (1991).

4. Shabat, B. V.: Introduction to Complex Analysis. Vol. 1. Moscow (1976).

5. Needham, T.: Differential Geometry and Forms: A Mathematical Drama in Five Acts. Princeton, NJ, 2021.

6. Kisil, V. V.: Geometry of Möbius Transformations: Elliptic, Para­bo­lic and Hyperbolic Actions of SL(2, R). London (2012).

7. Olsen, J.: The Geometry of Möbius Transformations. University of Ro­chester (2010).

8. Tsai, M. Ch., Gu, D. W. Linear Fractional Transformations. Robust and Optimal Control. London (2014).

9. Arnold, D. N., Rogness, D.: Möbius Transformations Revealed // Notices of the AMS, 55:10, 1226—1231 (2008).

10. Matsievsky, S. V.: Linear Fractional Transformations and Loba­chevsky Geometry. Kaliningrad (1982). The manuscript.