Differential Geometry of Manifolds

Current issue

Back to the list Download the article

Generalized bilinear connection on the space of centered planes



We continue to study the space of centered planes in projective space . In this paper, we use E. Cartan's method of external forms and the group-theoretical method of G. F. Laptev to study the space of centered planes of the same dimension. These methods are successfully applied in physics.

In a generalized bundle, a bilinear connection associated with a space is given. The connection object contains two simplest subtensors and subquasi-tensors (four simplest and three simple subquasi-tensors). The object field of this connection defines the objects of torsion, curvature-torsion, and curvature. The curvature tensor contains six simplest and four simple subtensors, and curvature-torsion tensor contains three simplest and two simple subtensors.

The canonical case of a generalized bilinear connection is considered.


1. Akivis, M. A., Rosenfeld, B. A.: Eli Cartan (1869—1951). Moscow (2014).

2. Belova, O. O.: Plane generalized affine connection associated with spa­ce of centered planes. Geometry of manifolds and its applications, Pro­ceedings of scientific. conf. with int. participation. Ulan-Ude, 8—13 (2010).

3. Belova, O. O.: Normal generalized affine connection associated with space of centered planes. DGMF. Kaliningrad, 41, 7—12 (2010).

4. Evtushik, L. E., Lumiste, Yu. G., Ostianu, N. M., Shirokov, A. P.: Differential-geometric structures on manifolds. J. Soviet Math., 14:6, 1573—1719 (1980).

5. Kuleshov, A. V.: Generalized connections on the complex of cen­tered planes in projective space. DGMF. Kaliningrad, 41, 75—85 (2010).

6. Shevchenko, Yu. I.: Clothings of centreprojective manifolds. Kali­ningrad (2000).

7. Shevchenko, Yu. I.: Laptev’s and Lumiste’s tricks for specifying a connection in a principal bundle. DGMF. Kaliningrad, 37, 179—187 (2006).

8. Shevchenko, Yu. I.: Connections Associated with the Distribution of Planes in Projective Space. Kaliningrad (2009).

9. Akivis, M. A., Shelekhov, A. M.: Cartan — Laptev method in the theory of multidimensional three-webs. J. Math. Sci., 177:522 (2011).

10. Belova, O. O.: Connections in fiberings associated with Grassman manifold and the space of centered planes. J. Math. Sci., 162:5, 605—632 (2009).

11. Belova, O.: Generalized affine connections associated with the spa­ce of centered planes // Maths., 9:7, 782 (2021). https://doi.org/10.3390/ math9070782.

12. Katanaev, M. O.: Geometric Methods in Mathematical Physics (2016). arXiv:1311.0733v3.

13. Mansouri, A.-R.: An extension of Cartan’s method of equivalence to immersions: I. Necessary conditions. Differential Geometry and its Applications, 27:5, 635—646 (2009).

14. Polyakova, K. V.: Parallel displacements on the surface of a pro­jective space. J. Math. Sci., 162:5, 675—709 (2009).

15. Rahula, M.: The G. F. Laptev method: fundamental objects of map­pings. J. Math. Sci., 174:675 (2011).

16. Scholz, E.: H. Weyl’s and E. Cartan’s proposals for infinitesimal geometry in the early 1920s. University Wuppertal (2010).