Differential Geometry of Manifolds

2023 №54(1)

Back to the list Download the article

On the geometry of sub-Riemannian manifolds equipped with a canonical quarter-symmetric connection



In this article, a sub-Riemannian manifold of contact type is under­stood as a Riemannian manifold equipped with a regular distribution of codimension-one and by a unit structure vector field orthogonal to this distribution. This vector field is called a structural. On a sub-Riemannian manifold of contact type, a quarter-symmetric connection is defined, which is associated with an endomorphism that preserves the distribution of the sub-Riemannian manifold. It is proved that if the connection under study is metric, then the endomorphism associated to it is uniquely de­fined. The structure of the associated endomorphism is found. In the case when the structure vector field is a field of infinitesimal isometries, the quarter-symmetric connection is called the canonical N-connection. An expression is found for the curvature tensor of the canonical N-connection in terms of the Riemann curvature tensor. The properties of the Schouten curvature tensor are investigated, which provide, in particular, the neces­sary symmetries of the curvature tensor of an N-connection for its sec­tional curvature to be well-defined. A relation between the sectional cur­vature of the canonical N-connection and the sectional curvature of the Levi-Civita connection is found. Necessary and sufficient conditions are found under which the sectional curvature of the N-connection and the sectional curvature of the Levi-Civita connection coincide.


1. Bukusheva, A. V.: On geometry of Kenmotsu manifolds with N-con­nection. DGMF, 50, 48—60 (2019).

2. Bukusheva, A. V.: Non-holonomic Kenmotsu manifolds equipped with ge­neralized Tanaka — Webster connection. DGMF, 52, 42—51 (2021).

3. Galaev, S. V.: Extended structures on codistributions of contact metric manifolds. Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform. 16:3, 263—272 (2016).

4. Galaev, S. V.: Almost contact metric spaces with N-connection. Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 15:3, 258—263 (2015).

5. Galaev, S. V.: Generalized Wagner’s curvature tensor of almost contact metric spaces. Chebyshevskii sb., 17:3, 53—63 (2016).

6. Galaev, S. V., Gokhman, A. V.: Almost symplectic connections on a nonholonomic manifold. Mathematics. Mechanics, 3, 28—31 (2001).

7. Klepikov, P. N., Rodionov, E. D., Khromova, O. P.: Sectional curva­ture of connections with vectorial torsion. Russ Math., 64, 75—79 (2020).

8. Agricola, I., Kraus, M.: Manifolds with vectorial torsion. Diff. Ge­om. and its App., 46, 130—146 (2016).

9. Barua, B., Ray, A. Kr.: Some properties of a semi-symmetric met­ric connection in a Riemannian manifold. Indian J. Pure App. Math., 16:7, 736—740 (1985).

10. Biswas, S. C., De, U. C.: Quarter-symmetric metric connection in an SP-Sasakian manifold. Commun. Fac. Sci. Univ. Ank. Ser. А1, 46, 49—56 (1997).

11. Cartan, E.: Sur les varieties a connexion affine et la theorie de la re­lative generalisee. Part II. Ann. Ec. Norm., 42, 17—88 (1925).

12. Galaev, S. V.: Intrinsic geometry of almost contact Kahlerian ma­ni­folds. Acta Mathematica Academiae Paedagogicae Nyiregyhaziensis, 31:1, 35—46 (2015).

13. Golab, S.: On semi-symmetric and quarter-symmetric linear con­nections. Tensor (N. S.), 29, 249—254 (1975).

14. Yano, K.: On semi-symmetric metric connection. Rev. Roum. Math. Pure Appl., 15, 1579—1586 (1970).

15. Yano, K. Imai, T.: Quarter-symmetric metric connections and their curvature tensors. Tensor (N. S.), 38, 13—18 (1982).