Differential Geometry of Manifolds

2023 №54(1)

Back to the list Download the article

On the most important achievements of V.F. Kirichenko in Theory of differentiable manifolds



We mark out the most important results obtained by outstanding Rus­sian geometer Vadim Feodorovich Kirichenko in the theory of almost Hermitian and almost contact metric manifolds.


1. Kirichenko, V. F.: On nearly-Kählerian structures induced by means of 3-vector cross products on six-dimensional submanifolds of Cay­ley algebra. Mosc. Univ. Math. Bull., 3, 70—75 (1973).

2. Arsen’eva, O. E., Banaru, M. B., Burlakov, M. P. et al.: Vadim Fe­dorovich Kirichenko. Itogi Nauki i Tekhn. Sovrem. Math. and its App. Theme Reviews, 220, 3—16 (2023).

3. Kirichenko, V. F.: Differential-geometric structures on manifolds. Odessa (2013).

4. Yano, K., Kon, M.: Structures on manifolds. Singapore (1984).

5. Kirichenko, V. F.: Methods of generalized Hermitian geometry in the theory of almost contact manifolds. J. Soviet Math., 42:5, 1885—1919 (1988).

6. Kirichenko, V. F.: On the geometry of Kenmotsu manifolds. Dokl. Math., 64:2, 230—232 (2001).

7. Kirichenko, V. F., Rustanov, A. R.: Differential geometry of quasi-Sasakian manifolds. Sb. Math., 193:8, 1173—1202 (2002).

8. Banaru, M. B., Kirichenko, V. F.: Almost contact metric structures on the hypersurface of almost Hermitian manifolds. J. Math. Sci. (New York), 207:4, 513—537 (2015).