Differential Geometry of Manifolds

2023 №54(1)

Back to the list Download the article

On the type constancy of some six-dimensional planar submanifolds of Cayley algebra



The notion of type constancy was introduced by Alfred Gray for nearly Kählerian manifolds and later generalized by Vadim F. Kirichenko and Irina V. Tret’yakova for all Gray — Hervella classes of almost Her­mitian manifolds. In the present note, we consider the notion of type con­stancy for some six-dimensional almost Hermitian planar submanifolds of Cayley algebra. The almost Hermitian structure on such six-dimensional submanifolds is induced by means of so-called Brown — Gray three-fold vector cross products in Cayley algebra. We select the case when six-dimensional submanifolds of Cayley algebra are locally symmetric.

It is proved that six-dimensional locally symmetric submanifolds of Ricci type of Cayley algebra are almost Hermitian manifolds of zero con­stant type. This result means that six-dimensional locally symmetric sub­manifolds of Ricci type of Cayley algebra possess a property of six-dimensional Kählerian submanifolds of Cayley algebra. However, there exist non-Kählerian six-dimensional locally symmetric submanifolds of Ricci type in Cayley algebra.


1. Gray, A.: Nearly Kähler manifolds. J. Diff. Geom., 4, 283—309 (1970).

2. Kirichenko, V. F.: K-spaces of constant type. Siberian Math. J., 17:2, 220—225 (1976).

3. Vanheche, L., Bouten, F.: Constant type for almost Hermitian man­ifolds. Bull. Math. Soc. Sci. Math. Répub. Soc. Roum., Nouv. Sér., 20, 415—422 (1976—1977).

4. Kirichenko, V. F., Tret’yakova, I. V.: On the constant type of almost Hermitian manifolds. Math. Notes, 68:5, 569—575 (2000).

5. Banaru, M. B., Banaru, G. A.: A note on six-dimensional planar Hermitian submanifolds of Cayley algebra. Buletinul Academiei de Şti­inţe a Republicii Moldova. Matematica, 1:74, 23—32 (2014).

6. Banaru, M. B., Banaru, G. A.: 1-cosymplectic hypersurfaces axiom and six-dimensional planar Hermitian submanifolds of the Octonian. SUT J. Math., 51:1, 1—9 (2015).

7. Banaru, M. B., Banaru, G. A.: On planar 6-dimensional Hermitian submanifolds Cayley algebra. DGMF, 48, 21—25 (2017).

8. Banaru, M. B., Banaru, G. A.: On stability of Hermitian structures on 6-dimensional planar submanifolds of Cayley algebra. DGMF, 52, 23—29 (2021).

9. Banaru, G. A.: On quasi-Sasakian structure on a totally umbilical hypersurface of a six-dimensional Hermitian planar submanifold of Cay­ley algebra. DGMF, 53, 17—22 (2022).

10. Banaru, M. B., Kirichenko, V. F.: The Hermitian geometry of the 6-dimensional submanifolds of Cayley algebra. Russian Mathematical Surveys, 49:1, 223—225 (1994). 

11. Kirichenko, V. F.: Hermitian geometry of six-dimensional sym­metric submanifolds of Cayley algebra. Mosc. Univ. Math. Bull., 49:3, 4—9 (1994).

12. Banaru, M. B.: On locally symmetric 6-dimensional Her­mitian submanifolds of Cayley algebra. DGMF, 47, 11—17 (2016).