Differential Geometry of Manifolds

2021 №52

Back to the list Download the article

The Grassmann-like manifold of centered planes when a surface is described by the centre

DOI
10.5922/0321-4796-2021-52-4
Pages
30-41

Abstract

We continue to study of the Grassmann-like manifold  of -centered planes. A special case is considered when the center  de­scribes an -dimensional surface . We will denote this mani­fold by . An analogue of the strong Norden normalization of the manifold  is realized. It is proved that this normalization induces a connection in the bundle associated with the manifold . A geometric characteristic of this connection is given with the help of parallel displacements.

In our research we use the Cartan method of external forms and the group-theoretical method of Laptev. These methods are used by many geometers and physicists.

The Grassmann-like manifold is closely related to such a well-known and popular manifold as the Grassmann manifold. The Grassmann mani­fold is an example of a homogeneous space and forms an important fun­damental class of projective manifolds, and the projective space itself can be represented as a Grassmann manifold.

Reference

1. Akivis, M. A., Rosenfeld, B. A.: Eli Cartan (1869—1951). Moscow: MCNMO (2014).

2. Al-Hassani, M. A., Luchinin, A. A.: Differentiable mapping of the rank  of affine  and projective  spaces. Izv. Tomsk Polytechnic University, 324:2, 35—39 (2014).

3. Al-Hassani M. A., Moldovanova E. A.: Mapping of an affine space into the manifold of zero pairs of a projective space. Izv. Tomsk Poly­technic University, 322:2, 24—28 (2013).

4. Belova, O. O.: The geometrical characteristic of induced connec­tions of Grassmann-like manifold of centered planes. DGMF. Kalinin­grad. 39, 13—18 (2008).

5. Bubyakin, I. V.: On the structure of complexes of -dimensional planes of the projective space  containing finitely number of torsos. Math. NEFU Notes, 24:4, 3—16 (2017).

6. Evtushik, L. E., Lumiste, Yu. G., Ostianu, N. M., Shirokov, A. P.: Differential-geometric structures on manifolds. J. Soviet Math., 14:6, 1573—1719 (1980).

7. Ivlev E. T., Moldovanova E. A.: Distribution of two-dimensional ar­eas in Euclidean space. Izv. Tomsk Polytechnic University, 320:2, 5—8 (2012).

8. Norden, A. P.: Spaces with an affine connection. Moscow (1976).

9. Stepanov, S. S.: Vectors, tensors and forms. Instructions for use. Moscow (2020).

10. Shevchenko, Yu. I.: Clothings of centreprojective manifolds. Kali­ningrad (2000).

11. Shevchenko, Yu. I.: Laptev’s and Lumiste’s tricks for specifying a connection in a principal bundle. DGMF. Kaliningrad. 37, 179—187 (2006).

12. Akivis, M. A., Goldberg, V. V.: Projective differential geometry of submanifolds. Elsevier, Amsterdam, North-Holland Math. Library (1993).

13. Akivis, M. A., Goldberg, V. V.: Conformal differential geometry and its generalization. Wiley, New York (1996). doi: 10.1002/97811180 32633.

14. Akivis, M. A., Shelekhov, A. M.: Cartan — Laptev method in the theory of multidimensional three-webs. J. Math. Sci., 177:522 (2011).

15. Belova, O. O.: The Grassmann-like manifold of centered planes. Math. Notes. Springer, New York, 104:6, 789—798 (2018).

16. Benini, F.: Basics of Differential Geometry & Group Theory. PhD thesis. Trieste (2018).

17. Katanaev, M. O.: Geometric Methods in Mathematical Physics, arXiv:1311.0733v3 (2016).

18. Lakshmibai V., Brown J.: The Grassmannian Variety. Geometric and Representation-Theoretic Aspects. Developments in Mathematics, 42. Springer, New York (2015).

19. Mansouri, A.-R.: An extension of Cartan’s method of equivalence to immersions: I. Necessary conditions. Diff. Geom. and its Appl., 27, 635—646 (2009).

20. Pfalzgraf, J. A short note on Grassmann manifolds with a view to noncommutative geometry. In: Petsche H. J., Lewis A., Liesen J., Russ S. (eds.). From Past to Future: Graßmann’s Work in Context. Springer, Ba­sel (2011). https://doi.org/10.1007/978-3-0346-0405-5_29.

21. Polyakova, K. V.: Parallel displacements on the surface of a pro­jective space. J. Math. Sci., 162:5, 675—709 (2009).

22. Rahula, M.: The G. F. Laptev method: fundamental objects of mappings. J. Math. Sci., 174:675 (2011).

23. Scholz, E.: H. Weyl’s and E. Cartan’s proposals for infinitesimal geometry in the early 1920s. University Wuppertal (2010).