Peculiarities of Kant’s Interpretation of the Term ‘Consequence’
Modern formal logic, which is based on Kant’s logical project, interprets logical consequence as formal, which leads to substantive paradoxes that combine any thoughts at all and so to the loss of consequence as such. Beginning with A. Tarski, modern history of logic ...
Kant's logic and Strawson's metaphysics
... transcendental logic through introducing ontological considerations based on P. Strawson's descriptive metaphysics. The notions of a particular, a sortal universal and a feature universal are introduced into the transcendental limitation on the inferences of formal logic.
1. Аристотель. Категории // Аристотель. Соч.: в 4 т. М., 1978. Т. 2. С. 53—90.
2. Брюшинкин В. Н. Взаимодействие формальной и трансцендентальной логики ...
Kant’s logic and Strawson’s metaphysics
... transcendental logic through introducing ontological considerations based on P. Strawson's descriptive metaphysics. The notions of a particular, a sortal universal, and a feature universal are introduced into the transcendental limitation on the inferences of formal logic.
1. Аристотель. Категории // Аристотель. Соч.: в 4 т. М., 1978. Т. 2. С. 53—90.
2. Брюшинкин В. Н. Взаимодействие формальной и трансцендентальной логики ...
The history of opposition between formal and dialectical logic in Russian philosophy
This article shows that the opposition between formal and dialectical logic first emerged within Hegel’s dialectical logic. The article shows that in the framework of the division of time into «now» and «not now», the incorrect formal logical description of dialectical opposition disappears. The author comes to a generalised conclusion: the rejection of language description of dialectical opposition as a true conjunctive proposition of the A ¬A type marks the end of opposition ...
Kant and new mathematics 100 years later
... Theory: Univalent Foundations of Mathemat-ics. Princeton, 2013.
20. Wigner E. The unreasonable effectiveness of mathematics in the natural sciences // Commun. Pure Appl. Math. 1960. № 13. P. 1—14.
Cassirer, Russell, philosophy of mathematics, formal logic, object-based knowledge, Category theory
Rodin A.
7-16
10.5922/0207-6918-2015-1-1
[html]1. Arnold V. I., 1998, O prepodavanii matematiki [On Mathematical Teaching] // Us-pekhi matematicheskih nauk [Advances of Mathematical Sciences] 53:1. p....