Kantian Journal

2021 Vol. 40. №2

Back to the list Download an article

What is Kantian Philosophy of Mathematics? An Overview of Contemporary Studies

DOI
10.5922/0207-6918-2021-2-6
Pages
151-178

Abstract

This review of contemporary discussions of Kantian philosophy of mathematics is timed for the publication of the essay Kant’s Philosophy of Mathematics. Volume 1: The Critical Philosophy and Its Roots (2020) edited by Carl Posy and Ofra Rechter. The main discussions and comments are based on the texts contained in this collection. I first examine the more general questions which have to do not only with the philosophy of mathematics, but also with related areas of Kant’s philosophy, e. g. the question: What is intuition and singular term? Then I look at more specific questions, e. g.: What is the subject of arithmetic and what is the significance of diagrams in mathematical reasoning? As a result, the reader is presented with a fairly complete overview of modern discussions which can be used as an introduction to the problem field of Kant’s philosophy of mathematics.

Reference

Allison, H. E., 1973. A Historical-Critical Introduction. In: H. E. Allison, ed. 1973. The Kant-Eberhard Controversy; An English translation together with supplementary materials and a historical-analytic introduction of Immanuel Kant’s: On a Discovery According to which any new Critique of Pure Reason has been Made Superfluous by an Earlier. Baltimore, London: The Johns Hopkins University Press, pp. 1-104.

Allison, H. E., 2004. Kant’s Transcendental Idealism: An Interpretation and Defense. 2nd ed. New Haven, London: Yale University Press.

Baumgarten, A., 1773. Acroasis logica. 2nd ed. Halle: Hemmerde.

Beck, L. W., 1955. Can Kant’s Synthetic Judgments Be Made Analytic? Kant-Studien, 47(1-4), pp. 168-181.

Beck, L. W., 1956. Kant’s Theory of Definition. The Philosophical Review, 65(2), pp. 179-191.

Beth, E. W., 1956. Über Lockes “Allgemeines Dreieck”. Kant-Studien, 48, pp. 361-380.

Brittan, G., 2020. Continuity, Constructibility, and Intuitivity. In: C. J. Posy and O. Rechter, ed. 2020. Kant’s Philosophy of Mathematics; Volume I: The Critical Philosophy and Its Roots. Cambridge: Cambridge University Press, pp. 181-199.

Brittan, G., 1978. Kant’s Theory of Science. Princeton: Princeton University Press,

Capozzi, M., 1981. Kant on Mathematical Definition. In: D. M. L. Chiara, ed. 1981. Italian Studies in the Philosophy of Science. Dordrecht: Springer, pp. 423-452.

Capozzi, M., 2020. Singular Terms and Intuitions in Kant: A Reappraisal. In: C. J. Posy and O. Rechter, ed. 2020. Kant’s Philosophy of Mathematics; Volume I: The Critical Philosophy and Its Roots. Cambridge: Cambridge University Press, pp. 103-125.

Carson, E., 1997. Kant on Intuition in Geometry. Canadian Journal of Philosophy, 27(4), pp. 489-512.

Carson, E., 2009. Hintikka on Kant’s mathematical method. Revue Internationale de Philosophie, 250(4), pp. 435-449.

Carson, E., 2020. Arithmetic and the Conditions of Possible Experience In: C. J. Posy, O. Rechter, ed. 2020. Kant’s Philosophy of Mathematics; Volume I: The Critical Philosophy and Its Roots. Cambridge: Cambridge University Press, pp. 231-247.

Cassirer, E., 1907. Kant und die moderne Mathematik. (Mit Bezug auf Bertrand Russells und Louis Couturats Werke über die Prinzipien der Mathematik). Kant-Studien, 12, pp.1-49.

Crusius, C., 1766. Entwurf der notwendigen Vernunftwahrheiten, wifern sie den zufälligen entgegen gesetzt werden. 3. Auflage. Leipzig: J. F. Gleditschens Buchhandlung.

Descartes, R., 1985. Principles of Philosophy. In: J. Cottinghanm, R. Stoothoff, ed. 1985. The Philosophical Writings of Descartes. Vol. 1. New York: Cambridge University Press, pp. 177-292.

Dunlop, K., 2014. Arbitrary combination and the use of signs in mathematics: Kant’s 1763 Prize Essay and Its Wolffian Background. Canadian Journal of Philosophy, 44(5-6), pp. 658-685.

Dunlop, K., 2020. Kant and Mendelssohn on the Use of Signs in Mathematics. In: C. J. Posy and O. Rechter, ed. 2020. Kant’s Philosophy of Mathematics; Volume I: The Critical Philosophy and Its Roots. Cambridge: Cambridge University Press, pp. 15-34.

Falkenstein, L., 2004. Kant’s intuitionism: a commentary on the transcendental aesthetic. Toronto: University of Toronto Press.

Ferrarin A., 2006. Lived Space, geometric Space in Kant. Studi Kantiani, 19, pp. 11-30.

Friedman, M., 1998. Kant and the Exact Sciences. Cambridge MA, London: Harvard University Press.

Friedman, M., 2019. Henry Allison and the B-Deduction. [online] Available at: <https://virtualcritique.wordpress.com/2019/04/19/henry-allison-and-the-b-deduction/&gt; [Accessed: 15. May 2019].

Friedman, M., 2020. Space and Geometry in the B Deduction. In: C. J. Posy and O. Rechter, ed. 2020. Kant’s Philosophy of Mathematics; Volume I: The Critical Philosophy and Its Roots. Cambridge: Cambridge University Press, pp. 200-228.

Hanna, R., 2003. Mathematics for Humans: Kant’s Philosophy of Arithmetic Revisited. European Journal of Philosophy, 10(3), pp. 328-352.

Heis, J., 2014. Kant (vs. Leibniz, Wolff and Lambert) on Real Definitions in Geometry. Canadian Journal of Philosophy, 44(5-6), pp. 605-630.

Heis, J., 2020. Kant on Parallel Lines: Definitions, Postulates, and Axioms. In: C. J. Posy and O. Rechter, ed. 2020. Kant’s Philosophy of Mathematics; Volume I: The Critical Philosophy and Its Roots. Cambridge: Cambridge University Press, pp. 157-180.

Hintikka, J., 1981. Kant’s Theory of Mathematics Revisited. Philosophical Topics, 12(2), pp. 201-215.

Hintikka, J., 1984. Kant’s transcendental Method and his Theory of Mathematics. Topoi, 3(2), pp. 99-108.

Hintikka, J., 1991. Knowledge and the Known. Historical Perspectives in Epistemology. Dordrecht: Springer, pp. 126-134.

Hintikka J., 1992. Kant on the Mathematical Method. In: C. J. Posy, ed. 1992. Kant’s Philosophy of Mathematics. Dordrecht: Springer, pp. 21-42.

Hintikka J., 2020. Kant’s Theory of Mathematics: What Theory of What Mathematics? In: C. J. Posy and O. Rechter, ed. 2020. Kant’s Philosophy of Mathematics; Volume I: The Critical Philosophy and Its Roots. Cambridge: Cambridge University Press, pp. 85-102.

Hogan D., 2009. Three Kinds of Rationalism and the Non-Spatiality of Things in Themselves. Journal of the History of Philosophy, 47(3), pp. 355-382.

Hogan D., 2013. Metaphysical Motives of Kant’s Analytic — Synthetic Distinction. Journal of the History of Philosophy, 51(2), pp. 267-307.

Hogan D. Kant and the Character of Mathematical Inference. In: C. J. Posy and O. Rechter, ed. 2020. Kant’s Philosophy of Mathematics; Volume I: The Critical Philosophy and Its Roots. Cambridge: Cambridge University Press, pp. 126-154.

Kant, I., 1992a. Attempt to Introduce the Concept of Negative Magnitudes into Philosophy. In: I. Kant, 1992. Theoretical Philosophy, 1755-1770. Translated and edited by D. Walford in collaboration with R. Meerbote. Cambridge: Cambridge University Press, pp. 203-242.

Kant, I., 1992b. Inquiry Concerning the Distinctness of the Principles of Natural Theology and Morality. In: I. Kant, 1992. Theoretical philosophy, 1755-1770. Translated and edited by D. Walford and R. Meerbote. Cambridge: Cambridge University Press, pp. 243-286.

Kant, I., 1992c. On the Form and Principles of the Sensible and the Intelligible World. In: I. Kant, 1992. Theoretical Philosophy 1755-1770. Translated and edited by D. Walford. Cambridge: Cambridge University Press, pp. 373-416.

Kant I., 1998. Critique of Pure Reason. Translated by P. Guyer, A. Wood. New York: Cambridge University Press.

Kant, I., 1999. Correspondence. Translated and edited by A. Zweig. Cambridge: Cambridge University Press.

Kant, I., 2004a. Metaphysical Foundations of Natural Science. Translated by M. Friedman. New York: Cambridge University Press.

Kant, I., 2004b. Prolegomena to Any Future Metaphysics that will be Able to Come Forward as Science. Translated by G. Hatfield. Cambridge: Cambridge University Press.

Kant, I., 2002. On a Discovery Whereby Any New Critique of Pure Reason Is to Be Made Superfluous by an Older One. Translated by H. Allison. In: I. Kant, 2002. Theoretical Philosophy after 1781. Edited by H. Allison and P. Heath. Cambridge: Cambridge University Press, pp. 281-336.

Kant, I., 1992. The Jäsche Logic. in: Lectures on logic. Translated by J. M. Young. Cambridge: Cambridge University Press, pp. 521-640.

Lu-Adler, H., 2018. Kant and the Science of Logic. A Historical and Philosophical Reconstruction. New York: Oxford University Press.

Mancosu, P., 1996. Philosophy of Mathematics and Mathematical Practice in the Seventeenth Century. New York: Oxford University Press.

Martin, G., 1967. Die mathematischen Vorlesungen Kants. Kant-Studien, 58, pp. 58-62.

Martin, G., 1972. Arithmetik und Kombinatorik bei Kant. Berlin: De Gruyter.

Meier, G. F., 1752. Vernunftlehre. Halle: Johann Justinus Gebauer.

Melnick, A., 1992. The Geometry of a form of Intuition. Kant’s Philosophy of Mathematics. In: C. J. Posy, ed. 1992. Kant’s Philosophy of Mathematics. Dordrecht: Springer, pp. 245-255.

Mendelssohn, M., 1786. Abhandlung über die Evidenz in metaphysischen Wissenschaften. Neue Auflage. Berlin: Haube & Spener.

Parsons, C., 1786. Kant’s Philosophy of Arithmetic. In: C. J. Posy, ed. 1992. Kant’s Philosophy of Mathematics. Dordrecht: Springer, pp. 43-79.

Parsons, C., 1992b. Arithmetic and the Categories. In: C. J. Posy, ed. 1992. Kant’s Philosophy of Mathematics. Dordrecht: Springer, pp. 135-158.

Peijnenburg, J., 1994. Formal Proof or Linguistic Process? Beth and Hintikka on Kant’s Use of ’Analytic’. Kant-Studien, 85(2), pp. 160-178.

Posy, C. J., 1983. Dancing to the Antinomy: A Proposal for Transcendental Idealism. American Philosophical Quarterly, 20(1), pp. 81-94.

Posy, C. J. Mathematics as a Transcendental Science. In: T. M. Seebohm, D. Føllesdal and J. Mohanty, ed. 1991. Phenomenology and the Formal Sciences. Dordrecht, Boston: Kluwer, pp. 107-132.

Posy, C. J., 2019. The infinite, the indefinite and the critical turn: Kant via Kripke models. Inquiry. [online] doi: 10.1080/0020174X.2019.1651095. Available at: https://www.tandfonline.com/doi/full/10.1080/0020174X.2019.1651095 [Accessed 03 January 2021].

Posy, C. J., 2020. Of Griffins and Horses: Mathematics, Metaphysics, and Kant’s Critical Turn. In: C. J. Posy and O. Rechter, ed. 2020. Kant’s Philosophy of Mathematics; Volume I: The Critical Philosophy and Its Roots. Cambridge: Cambridge University Press, pp. 35-65.

Posy, C. J. and Rechter O., 2020. Introduction. In: C. J. Posy and O. Rechter, ed. 2020. Kant’s Philosophy of Mathematics; Volume I: The Critical Philosophy and Its Roots. Cambridge: Cambridge University Press, pp. 1-12.

Risjord, M., 1990. The Sensible Foundation for Mathematics: a Defense of Kant’s view. Studies in History and Philosophy of Science. Part A, 21(1), pp. 123-143.

Rusnock, P., 2004. Was Kant’s philosophy of mathematics right for its time? Kant-Studien, 95, pp. 426-442.

Rusnock, P. and George, R., 1995. A Last Shot at Kant and Incongruent Counterparts. Kant-Studien, 86(3), pp. 257 277.

Russell, B., 2010. Principles of Mathematics. London, New York: Routledge.

Schirn, V. M., 1991. Kants Theorie der geometrischen Erkenntnis und die nichteuklidische Geometrie. Kant-Studien, 82(1), pp. 1-28.

Schultz, J. Erläuterungen über des Herrn Professor Kant Critik der reinen Vernunft. Neue verbesserte Auflage. Frankfurt & Leipzig: [s. n.], 1791.

Shabel, L., 1998. Kant on the ‘Symbolic Construction’ of Mathematical Concepts. Studies in History of Philosophy of Science. Part A, 29(4), pp. 589-621.

Shabel, L., 2003. Mathematics in Kant’s Critical Philosophy: Reflections on Mathematical Practice. New York, London: Routledge.

Sutherland, D., 2005. The Point of Kant’s Axioms of Intuition. Pacific Philosophical Quarterly, 86(1), pp. 135-159.

Sutherland, D. 2017. Kant’s Conception of Number. Philosophical Review, 126(2), pp. 147-190.

Sutherland, D., 2020. Kant’s Philosophy of Arithmetic: An Outline of a New Approach. In: C. J. Posy and O. Rechter, ed. 2020. Kant’s Philosophy of Mathematics; Volume I: The Critical Philosophy and Its Roots. Cambridge: Cambridge University Press, pp. 248-266.

Tait, W. W., 2020. Kant on ‘Number’. In: C. J. Posy and O. Rechter, ed. 2020. Kant’s Philosophy of Mathematics; Volume I: The Critical Philosophy and Its Roots. Cambridge: Cambridge University Press, pp. 267-291.

Thompson, M., 1972. Singular Terms and Intuitions in Kant’s Epistemology. The Review of Metaphysics, 26(2), pp. 314-343.

Tolley, C., ed. 2021. Kant: Philosophy of Mathematics. PhilPapers, Bibliography. [online] Available at: <https://philpapers.org/browse/kant-philosophy-of-mathematics&gt; [Accessed 03 January 2021].

Vaihinger, H., 1921. Kommentar zu Kants Kritik der reinen Vernunft; Band II. Stuttgart, Berlin & Leipzig: Union deutsche Verlagsgesellschaft.

Warren, D., 2020. Kant on Mathematics and the Meta­physics of Corporeal Nature: The Role of the Infinitesimal. In: C. J. Posy, O. Rechter, ed. 2020. Kant’s Philosophy of Mathematics; Volume I: The Critical Philosophy and Its Roots. Cambridge: Cambridge University Press, pp. 66-82.

Wilson, K. D., 1975. Kant on Intuition. The Philosophical Quarterly, 25(100), pp. 247-265.

Wolff-Metternich, B.-S. v., 1995. Die Überwindung des mathematischen Erkenntnisideals: Kants Grenzbestimmung von Mathematik und Philosophie. Berlin: Walter de Gruyter.

Wolff, C., 1710. Der Anfangs-Gründe Aller Mathematischen Wissenschaften; Erster Theil. Halle: Renger.

Wolff, C., 1734. Auszug aus den Anfangsgründen aller mathematischen Wissenschaften, Zu bequemerem Gebrauche der Anfänger, Auf Begehren verfertiget. 5. Auflage. Frankfurt und Leipzig: Rengersche Buchhandlung.

Wolff, C., 1740. Philosophia rationalis sive logica, methodo scientifica pertractata. In: Philosophia rationalis sive logica, methodo scientifica pertractata et ad usum scientiarum atque vitae aptata praemittitur discursus praeliminaris de philosophia in genere. Francofurti & Lipsiae: Officina Libraria Rengeriana.

Wolff, C., 1742. Vernünftige Gedanken von den Kräften des menschlichen Verstandes und ihrem richtigen Gebrauche in Erkäntniß der Wahrheit. 12. Auflage. Halle: Renger.

Wolff, C., 1752. Vernünftige Gedanken von Gott, der Welt und der Seele des Menschen, auch allen Dingen überhaupt. Halle: Rengerischen Buchhandlung,

Wolff, R. P., 1963. Kant’s Theory of Mental Activity: a Commentary on the Transcendental Analytic of the Critique of Pure Reason. Cambridge (MA): Harvard University Press.