Естественные и медицинские науки

2020 Выпуск №1

Назад к списку Скачать статью

Диапазон нормальных значений жесткости печени у здо­ровых лиц

Страницы / Pages
106-122

Аннотация

В статье осуществлен обзор нормативов значений жесткости пе­чени, произведено сопоставление зарубежных и российских исследований в этой области. Представлены варианты нормальных значений жестко­сти печени при эластографии сдвиговой волной, полученных разными авторами при измерениях на различных аппаратах. Выявлено, что нормальный диапазон показателей жесткости печени у здоровых лиц колеблется в широких пределах: при транзиентной эластографии (Fi­broScan, Echosens) — в диапазоне 1,5—7,5 кПа, при транзиентной эла­с­то­графии сдвиговой волной (iU elite, Philips) — 2,4—6,2 кПа, при двух­мер­ной (Aixplorer, Supersonic Imagine) — 2,6—6,2 кПа. Ско­рость сдвиго­вой волны в ткани печени при транзиентной эластогра­фии сдви­говой вол­ной (Acuson S2000, Siemens) находится в диапазоне 0,71—1,71 м/с. При­веденные данные измерений жесткости печени и ско­ро­сти сдви­говой вол­ны у здоровых лиц не могут рассматриваться в ка­че­стве ре­ференс­ной базы для определения границ нормы. Этим обос­но­вывается необхо­ди­мость достижения консенсуса по нормативным зна­чениям данных по­казателей. Отмечается, что с учетом несовпаде­ния резуль­татов из­ме­рений жесткости печени на аппаратуре различ­ных произво­дителей ди­намическое наблюдение за показателями жестко­сти печени у пациен­та целесообразно производить на одной и той же аппа­ратуре, с исполь­зованием одного датчика, на глубине 2—5 см от капсулы печени и, же­лательно, одним и тем же оператором. Указывает­ся на необходи­мость соблюдать осторожность при использовании поро­говых значений скоро­сти сдвиговой волны на различной аппаратуре, по­скольку это вли­яет на оценку жесткости печени, а значит, степени фиброза.

Abstract

The article focuses on normative values of the liver shear wave elas­tography and comparison of various works in elastography of the internation­al and Rus­sian research. A variety of normal values of liver stiffness during shear wave elastography obtained by different authors when measuring on various devices are presented. The normal range of liver stiffness measure­ments in healthy peo­ple var­ies widely: the normal liver elasticity values may vary in range of 1.5—7.5 kPa on measuring by transient elastography (Fi­broScan, Echosens); 2.4—6.2 kPa on measuring by point shear wave elas­tography (iU elite, Philips); 2.6—6.2 kPa on measuring by 2D shear wave elastography (Aixplorer, Supersonic Imagine). The liver shear wave velocity varies in the range of 0.71—1.71 m/s on measur­ing by the point shear wave elastography. The given data of the normal liver stiffness measurement and shear wave velocity in healthy people could not be taken as the reference data for assessing the normal values. Consensus is needed on the subject of normal values of the liver stiffness measurements and shear wave velocity in the liver tissue. Considering the discrepancy between the re­sults of normal liver stiff­ness values in the sonographic equipment of various manufacturers dynamic observation upon liver stiffness values should be per­formed using the same machine in the same individual on the depth of 2—5 cm from liver capsule, preferably by the same operator. Caution should be given while using thresh­old values of the normal liver stiffness on different equipment because it influ­ences the assessment of the liver stiffness measurements and, consequently fi­brosis stage.

Список литературы

1. Boursier J., Konaté A., Gorea G. et al. Reproducibility of liver stiffness measure­ment by ultrasonographic elastometry // Clin. Gastroenterol. Hepatol. 2008. Vol. 6 (11). Р. 1263—1269. doi: 10.1016/j.cgh.2008.07.006.
2. Hudson J. M., Milot L., Parry C. et al. Inter- and intra-operator reliability and re­peatability of shear wave elastography in the liver: a study in healthy volunteers // Ultrasound Med. Biol. 2013. Vol. 39 (6). P. 950—955. doi: 10.1016/j.ultrasmedbio. 2012.
3. Arda K., Ciledag N., Arıbas B. K. et al. Quantitative assessment of the elasticity values of liver with shear wave ultrasonographic elastography // Indian J. Med. Res. 2013. Vol. 137 (5). P. 911—915.
4. Bende F., Mulabecirovic A., Sporea I. et al. Assessing Liver Stiffness by 2-D Shear Wave Elastography in a Healthy Cohort // Ultrasound Med. Biol. 2018. Vol. 44 (2). P. 332—341. doi: 10.1016/j.ultrasmedbio.2017.10.013.
5. D’Onofrio M., Gallotti A., Mucelli R. P. Tissue quantification with acous­tic radiation force impulse imaging: Measurement repeatability and normal values in the healthy liver // Am. J. Roentgenol. 2010. Vol. 195 (1). P. 132—136. doi: 10.2214/ AJR.09.3923.
6. Engelmann G., Gebhardt C., Wenning D. et al. Feasibility study and con­troll va­lues of transient elastography in healthy children // Eur. J. Pediatr. 2012. Vol. 171 (2). P. 353—360. doi: 10.1007/s00431-011-1558-7.
7. Ferraioli G., Lissandrin R., Zicchetti M., Filice C. Assessment of liver stiffness with transient elastography by using S and M probes in healthy children // Eur. J. Pediatr. 2012. Vol. 171 (9). P. 1415. doi: 10.1007/s00431-012-1777-6.
8. Fontanilla T., Canas T., Macia A. et al. Normal values of liver shear wave veloci­ty in healthy children assessed by acoustic radiation force impulse imaging using a convex probe and a linear probe // Ultrasound Med. Biol. 2014. Vol. 40 (3). P. 470—477. doi: 10.1016/j.ultrasmedbio.2013.10.024.
9.   Fung J., Lai C. L., Chan S. C. et al. Correlation of liver stiffness and histologi­cal features in healthy persons and in patients with occult hepatitis B, chronic active hepatitis B, or hepatitis B cirrhosis // Am. J. Gastroenterol. 2010. Vol. 105 (5). P. 1116—1122. doi: 10.1038/ajg.2009.665.
10.  Fung J., Lee C. K., Chan M. et al. Defining normal liver stiffness range in a normal healthy Chinese population without liver disease // PLOS One. 2013. Vol. 8 (12). P. e85067. doi: 10.1371/journal.pone.0085067.
11.  Guzmán-Aroca F., Reus M., Berná-Serna J. D. et al. Reproducibility of shear wave velocity measurements by acoustic radiation force impulse imaging of the liver: a study in healthy volunteers // J. Ultrasound Med. 2011. Vol. 30 (7).P. 975—979.
12.  Hanquinet S., Courvoisier D., Kanavaki A. et al. Acoustic radiation force impulse imaging-normal values of liver stiffness in healthy children // Pediatr. Radiol. 2013. Vol. 43 (5). P. 539—544. doi: 10.1007/s00247-012-2553-5.
13.  Huang Z., Zheng J., Zeng J. et al. Normal liver stiffness in healthy adults asses­sed by real-time shear wave elastography and factors that influence this method // Ultrasound Med. Biol. 2014. Vol. 40 (11). P. 2549—2555. doi: 10.1016/j.ultrasmedbio. 2014.05.008.
14.  Karlas T., Pfrepper C., Wiegand J. et al. Acoustic radiation force impulse imag­ing (ARFI) for non-invasive detection of liver fibrosis: examination standards and evaluation of interlobe differences in healthy subjects and chronic liver disease // Scand. J. Gastroenterol. 2011. Vol. 46 (12). P. 1458—1467. doi: 10.3109/00365521.2011. 610004.
15.  Kim K. M., Choi W. B., Park S. H. et al. Diagnosis of hepatic steatosis and fibro­sis by transient elastography in asymptomatic healthy individuals: a prospective study of living related potential liver donors // J. Gastroenterol. 2007. Vol. 42 (5). P. 382—388. doi: 10.1007/s00535-007-2016-1.
16.  Lee M. J., Kim M. J., Han K. H., Yoon C. S. Age-related changes in liver, kidney, and spleen stiffness in healthy children measured with acoustic radiation force im­pulse imaging // Eur. J. Radiol. 2013. Vol. 82 (6). P. 290—294. doi: 10.1016/j.ejrad. 2013.01.018.
17.  Roulot D., Czernichow S., Le Clésiau H. et al. Liver stiffness values in apparent­ly healthy subjects: influence of gender and metabolic syndrome // J. Hepatol. 2008. Vol. 48 (4). P. 606—613. doi: 10.1016/j.jhep.2007.11.020.
18.  Raghuwanshi B., Jain N., Jain M. Normal values in healthy liver in central In­dia by acoustic radiation force impulse imaging // J. Clin. Diagn. Res. 2013. Vol. 7 (11). P. 2498—2501. doi: 10.7860/JCDR/2013/7479.3589.
19.  Рыхтик П. И., Рябова Е. Н., Шатохина И. В. и др. Возможности применения ARFI-эластографии при диагностике фиброза печени // Медицинский альма­нах. 2017. № 1 (46). С. 62—65.
20.  Son C. Y., Kim S. U., Han W. K. et al. Normal liver elasticity values using acous­tic radiation force impulse imaging: a prospective study in healthy living liver and kid­ney donors // J. Gastroenterol Hepatol. 2012. Vol. 27 (1). P. 130—136. doi: 10.1111/j.1440-1746.2011.06814.x.
21.  Yoon J., Lee J. M., Han J. K., Choi B. I. Shear wave elastography for liver stiffness measurement in clinical sonographic examinations evaluation of intraobserver re­producibility, technical failure, and unreliable stiffness measurements / J. Ultra­sound Med. 2014. Vol. 33 (3). P. 437—447. doi: 10.7863/ultra.33.3.437.
22.  Dong Y., Sirli R., Ferraioli G. et al. Shear wave elastography of the liver — re­view on normal values // Z. Gastroenterol. 2017. Vol. 55 (2). P. 153—166. doi: 10.1055/s-0042-117226.
23.  Sirli R., Sporea I., Tudora A. et al. Transient elastographic evaluation of subjects without known hepatic pathology: does age change the liver stiffness? // J. Gastroin­testin. Liver Dis. 2009.  Vol. 18 (1). P. 57—60.
24.  Șirli R., Bota S., Sporea I. et al. Liver stiffness measurements by means of su­personic shear imaging in patients without known liver pathology // Ultrasound Med. Biol. 2013. Vol. 39 (8). P. 1362—1367. doi: 10.1016/j.ultrasmedbio.2013.03.021.
25.  Sporea I., Sirli R., Deleanu A. et al. Liver stiffness measurement by transient elastography in clinical practice // J. Gastrointestin Liver Dis. 2008. Vol. 17 (4). P. 395—399.

26. Das K., Sarkar R., Ahmed S. M. et al. «Normal» liver stiffness measure (LSM) values are higher in both lean and obese individuals: a population-based study from a developing country // Hepatology. 2012. Vol. 55 (2). P. 584—593. doi: 10.1002/ hep.24694.

27. Kumar M., Sharma P., Garg H. et al. Transient elastographic evaluation in adult subjects without overt liver disease: influence of alanine aminotransferase lev­els // J. Gastroenterol. Hepatol. 2011. Vol. 26 (8). P. 1318—1325. doi: 10.1111/j.1440-1746. 2011.06736.x.

28. Cho Y., Tokuhara D., Morikawa H. et al. Transient elastography-based liver pro­files in a hospital-based pediatric population in Japan // PLOS One. 2015. Vol. 10 (9). P. e0137239—e0137242.

29. Madhok R., Tapasvi C., Prasad U. et al. Acoustic radiation force impulse imag­ing of the liver: measurement of the normal mean values of the shearing wave veloci­ty in a healthy liver // J. Clin. Diagn. Res. 2013. Vol. 7 (1). P. 39—42. doi: 10.7860/ JCDR/2012/5070.2665.

30. Wong G. L., Chan H. L., Choi P. C. et al. Association between anthropometric parameters and measurements of liver stiffness by transient elastography // Clin. Gastroenterol. Hepatol. 2013. Vol. 11 (3). P. 295—302. doi: 10.1016/j.cgh.2012.09.025.

31. Gallotti A., D'Onofrio M., Pozzi Mucelli R. Acoustic Radiation Force Impulse (ARFI) technique in ultrasound with Virtual Touch tissue quantification of the upper abdomen // Radiol. Med. 2010. Vol. 115 (6). P. 889—897. doi: 10.1007/s11547-010- 0504-5.

32. Colombo S., Belloli L., Zaccanelli M. et al. Normal liver stiffness and its deter­minants in healthy blood donors // Dig. Liver. Dis. 2011. Vol. 43 (3). P. 231—236. doi: 10.1016/j.dld.2010.07.008.

33. Corpechot C., El Naggar A., Poupon R. Gender and liver: is the liver stiffness weaker in weaker sex? // Hepatology. 2006. Vol. 44 (2). P. 513—514. doi: 10.1002/ hep.21306

34. Goertz R. S., Amann K., Heide R. et al. An abdominal and thyroid status with Acoustic Radiation Force Impulse Elastometry — a feasibility study: Acoustic Radiation Force Impulse Elastometry of human organs // Eur. J. Radiol. 2011. Vol. 80 (3). P. e226—e230.

35. Horster S., Mandel P., Zachoval R., Clevert D. A. Comparing acoustic radiation force impulse imaging to transient elastography to assess liver stiffness in healthy volunteers with and without Valsalva manoeuvre // Clin. Hemorheol. Microcirc. 2010. Vol. 46 (2—3). P. 159—168. doi: 10.3233/CH-2010-1342.

36. Kim J. E., Lee J. Y., KimY. J. et al. Acoustic radiation force impulse elastography for chronic liver disease: comparison with ultrasound-based scores of experienced radiologists, Child-Pugh scores and liver function tests // Ultrasound Med. Biol. 2010. Vol. 36 (10). P. 1637—1643. doi: 10.1016/j.ultrasmedbio.2010.07.016.

37. Toshima T., Shirabe K., Takeishi K. et al. New method for assessing liver fibrosis based on acoustic radiation force impulse: a special reference to the difference be­tween right and left liver // J. Gastroenterol Hepatol. 2011. Vol. 46 (5). P. 705—711. doi: 10.1007/s00535-010-0365-7.

38. Rifai K., Cornberg J., Mederacke I. et al. Clinical feasibility of liver elastography by acoustic radiation force impulse imaging (ARFI) // Dig. Liver Dis. 2011. Vol. 43 (6). P. 491—497. doi: 10.1016/j.dld.2011.02.011.

39. Motosugi U., Ichikawa T., Niitsuma Y., Araki T. Acoustic radiation force im­pulse elastography of the liver: can fat deposition in the liver affect the measurement of liver stiffness? // Jpn. J. Radiol. 2011. Vol. 29. P. 639—643. doi. org/10.1007/ s11604-011-0607-5.

40. Yun M. H., Seo Y. S., Kang H. S. et al. The effect of the respiratory cycle on liver stiffness values as measured by transient elastography // J. Viral Hepat. 2011. Vol. 18 (9). P. 631—636. doi: 10.1111/j.1365-2893.2010.01376.x.

41. Jaffer O. S., Lung P. F., Bosanac D. et al. Acoustic radiation force impulse quan­tification: repeatability of measurements in selected liver segments and influence of age, body mass index and liver capsule-to-box distance // Br. J. Radiol. 2012. Vol. 85 (1018). P. e858—e863. doi: 10.1259/bjr/74797353.

42. Sporea I., Bota S., Grădinaru-Taşcău O. et al. Comparative study between two point Shear Wave Elastographic techniques: Acoustic Radiation Force Impulse (ARFI) elastography and ElastPQ // Med. Ultrason. 2014. Vol. 16 (4). P. 309—314.

43. Феоктистова Е. В., Пыков М. И., Амосова А. А. и др. Применение ARFI-элас­тографии для оценки жесткости печени у детей различных возрастных групп // Ультразвуковая и функциональная диагностика. 2013. № 6. С. 46—55.

44. Ling W., Lu Q., Quan J. et al. Assessment of impact factors on shear wave based liver stiffness measurement // Eur. J. Radiol. 2013. Vol. 82 (2). P. 335—341. doi: 10.1016/j.ejrad.2012.10.004.

45. Ferraioli G., Tinelli C., Lissandrin R. et al. Point shear wave elastography meth­od for assessing liver stiffness // World J. Gastroenterol. 2014. Vol. 20 (16). P. 4787—4796. doi: 10.3748/wjg.v20.i16.4787.

46. Muller M., Gennisson J. L., Deffieux T. et al. Quantitative viscoelasticity map­ping of human liver using supersonic shear imaging: preliminary in vivo feasability study // Ultrasound Med. Biol. 2009. Vol. 35 (2). P. 219—229. doi: 10.1016/j.ultras medbio.2008.08.018.

47. Ferraioli G., Tinelli C., Zicchetti M. et al. Reproducibility of real-time shear wave elastography in the evaluation of liver elasticity // Eur. J. Radiol. 2012. Vol. 81 (11). P. 3102—3106. doi: 10.1016/j.ejrad.2012.05.030.

48. Franchi-Abella S., Corno L., Gonzales E. et al. Feasibility and diagnostic accura­cy of supersonic shear-wave elastography for the assessment of liver stiffness and liver fibrosis in children: a pilot study of 96 patients // Radiology. 2016. Vol. 278 (2). P. 554—562. doi: 1148/radiol.2015142815.

49. Wang C. Z., Zheng J., Huang Z. P. et al. Influence of measurement depth on the stiffness assessment of healthy liver with real-time shear wave elastography // Ul­trasound Med. Biol. 2014. Vol. 40 (3). P. 461—469. doi: 10.1016/j.ultrasmedbio.2013. 10.021.

50. Диомидова В. Н., Петрова О. В. Сравнительный анализ результатов эла­стографии сдвиговой волной и транзиентной эластографии в диагностике диффузных заболеваний печени // Ультразвуковая и функциональная диа­гностика. 2013. № 5. С. 17—23.