1 + 1-мерные уравнения Янга — Миллса и масса через квази­клас­сическую поправку к действию :: Единая Редакция научных журналов БФУ им. И. Канта

×

Ваш логин
Зарегистрироваться
Пароль
Забыли свой пароль?
Войти как пользователь:
Войти как пользователь
Вы можете войти на сайт, если вы зарегистрированы на одном из этих сервисов:
   
Моя вера – это вера в то, что счастье человечеству даст прогресс науки
Иван Петрович Павлов

DOI-генератор Поиск по DOI на Crossref.org

1 + 1-мерные уравнения Янга — Миллса и масса через квази­клас­сическую поправку к действию


Автор Лебле С. Б.
Ключевые слова уравнения Янга — Миллса, нелинейная плоская волна, диагональ функции Грина
Ключевые слова (англ.) Yang — Mills equations, nonlinear plane wave, Green function dia­gonal
Аннотация Двумерные модели Янга — Миллса в псевдоевклидовом простран­стве рассматриваются с точки зрения одного класса нелинейных урав­нений Клейна — Гордона — Фока. Показано, что уменьшение Нама не работает, предложен и исследован другой, новый выбор. Квазиклассиче­ское квантование моделей основано на построении интеграла по траек­ториям Фейнмана — Маслова и представлении его дзета-функции в виде диагональной функции Грина для уравнения вспомогательной теп­лоты с эллиптическим потенциалом. При естественной перенорми­ровке используется свобода выбора состояния вакуума, а также выбор нормы собственных векторов оператора эволюции. Ненулевая масса по­является как квазиклассическая поправка, которая выражается через гиперэллиптический интеграл.

Аннотация (англ.) Two-dimensional Yang — Mills models in a pseudo-euclidean space are considered from a point of view of a class of nonlinear Klein — Gordon — Fock equations. It is shown that the Nahm reduction does not work, another, novel choice is proposed and investigated. A quasiclassical quantization of the models is based on Feynmann — Maslov path integral construction and its zeta function representation in terms of a Green function diagonal for an aux­iliary heat equation with an elliptic potential. The natural renormalization use a freedom in vacuum state choice as well as the choice of the norm of an evolu­tion operator eigenvectors. A nonzero mass appears as the quasiclassical cor­rection, that is expressed via hyperelliptic integral.
Список литературы

1. Savvidy G. K. The Yang — Mills Classical Mechanics as a Kolmogorov K-sys­tem // Phys. Letts. B. 1983. Vol. 130, iss. 5. P. 303—307.

2. Faddeev L. D.,Slavnov A. A. Gauge Fields: An Introduction To Quantum Theory. Westview Press, 1993.

3. Baseyan G. Z., Matinyan S. G., Savvidi G. K. Non-Linear Plane Waves in the Massless Yang — Mills Theory // Pis'ma ZETP. 1979. Vol. 29, iss. 10. P. 641—644.

4. Faddeev L. D., Popov V. N. Feynman Diagrams for the Yang — Mills Field // Phys. Lett. B. 1967. Vol. 25, iss. 1. P. 29—30.

5. Nikolaevskii E. S., Schur L. N. Non-Integrability of the Classical Yang — Mills Fields // JETP Letts. 1982. Vol. 36, iss. 5. P. 2018—221.

6. Corrigan E., Wainwright P. R., Wilson S. M. J. Comments on the Non-Self-Dual Nahm Equations // Commun. Math. Phys. 1985. Vol. 98. P. 259—272.

7. Konopleva N. P., Popov V. N. Gauge Fields. N. Y., 1981.

8. Nahm W. Quantum Field Theories in One and Two Dimensions Duke // Math. J. 1987. Vol. 54, iss. 2. P. 579—613.

9. Brüning J., Grushin V. V., Dobrokhotov S. Yu., Tudorovskii T. Ya. Generalized Foldy-Wouthuysen Transformation and Pseudodifferential Operators // Theor. Math. Phys. 2011. Vol. 167, iss. 2. P. 171—192.

10. Leble S.  Quantum Corrections to Static Solutions of Nahm Equation and Sin-Gordon Models via Generalized Zeta-Function // Theor. Math. Phys. 2009. Vol. 160, iss. 1. P. 976—985.

11. Boozer A. D. Classical Yang-Mills theory // Am. J. Phys. 2011. Vol. 79, iss. 9. P. 925—931.

12. Leble S. Quantum Corrections to Finite-Gap Solutions for Yang-Mills-Nahm Equations via Zeta-Function Technique // Mathematics and Physics of Solitons and Integrable Systems: Conference in honor of Vladimir B. Matveev's 65th Birthday. arXiv:1104.3848v1 [math-ph].

13. Faddeev L. D. Mass in Quantum Yang-Mills Theory (Comment on a Clay Mil­le­nium Problem). arXiv:0911.1013v1 [math-ph].

14. Leble S., Perelomova A. The Dynamical Projectors Method: Hydro and Elect­rodynamics. CRC Presss, 2018.

15. Drach J. Sur l'integration par quadrature de léquation // Comptes Rendus Acad. Sci. 1919. Vol. 168, iss. 7. P. 337—340.

16. Kwiatkowski G., Leble S. Quantum Corrections to Quasi-Periodic Solution of Sine-Gordon Model and Periodic Solution of Phi-4 Model // J. Phys.: Conference Series. 2014. Vol. 482. 012023.

17. Maslov V. P. Stationary-Phase Method for Feynman`s Continual Integral // Theor. Math. Phys. 1970. Vol. 2, iss. 1. P. 30—35.

18. Fock V. A. Proper Time in Classical and Quantum // Phys. Zeit. d. Sowje­tunion. 1937. Vol. 12. P. 404—425.

19. Its A. R., Matveev V. B.  Schrödinger Operators with the Finite-Band Spectrum and the N-soliton Solutions of the Korteweg — de Vries Equation // Teor. Math. Phys. 1975. Vol. 23. P. 51—68.

20. Leble S., Terent'ev I. Model of Elementary Particles Theory in 6-Dimensional Space with Curvature // Theor. Math. Phys. 1973. Vol. 16. P. 291—302.




Назад в раздел