Естественные и медицинские науки

2017 Выпуск №3

Назад к списку Скачать статью

Морфологические особенности почечных телец лабораторных мышей в эксперименте с водорастворимым соединением кремния

Страницы / Pages
50-57

Аннотация

Избыток соединений кремния в организме приводит к системным нарушениям. Независимо от способа поступления в организм соединения кремния (диоксид кремния, асбест, силикон и наночастицы кремния) оказывают выраженное действие на организм в целом. и Доказана роль этих соединений в патогенезе заболеваний почек. Приведена морфологическая характеристика почечных телец лабораторных мышей (n = 10) при поступлении в течение трех месяцев соединения кремния в концентрации 10 мг/л с питьевой водой ad libitum. Соединения кремния приводят к морфологическим изменениям почечных телец — уменьшению размеров клубочков и увеличению площади полости капсулы. При этом площадь самих клубочков не увеличивается.

Abstract

An excess of silicon compounds in the body leads to systemic deficiencies. Regardless of the way by which silicon compounds (silicon dioxide, asbestos, silicon, and silicon nanoparticles) enter the body, they always have a marked effect. It is established that these compounds play a part in the pathogenesis of renal diseases. The article provides a morphological description of the renal corpuscles of laboratory mice (n=10) during three months’ ad libitum administration of silicon in a concentration of 10 mg/l. Silicon compounds cause morphological changes in renal corpuscles – a reduction in the size of glomeruli and an increase in capsular space.

Список литературы

1. ГОСТ Р 52109-2003. Вода питьевая, расфасованная в емкости. Общие технические условия. М., 2003.
2. СанПиН 2.1.4.1116-02 Питьевая вода. Гигиенические требования к качеству воды, расфасованной в емкости. Контроль качества. М., 2002.
3. Зайцева Н. В., Землянова М. А., Звездин В. Н. и др. Влияние наночастиц диоксида кремния на морфологию внутренних органов у крыс при пероральном введении // Анализ риска здоровью. 2016. № 4. С. 80—94.
4. Ковальский В. В., Сусликов В. Л. Кремниевые субрегионы биосферы СССР // Труды биогеохим. лаб. М., 1980. Т. 18. С. 3—58.
5. Медик В. А., Токмачёв М. С., Фишман Б. Б. Статистика в медицине и биологии. Т. 1 : Теоретическая статистика. М., 2000.
6. Сапожников С. П., Гордова В. С. Роль соединений кремния в развитии аутоиммунных процессов // Микроэлементы в медицине. 2013. № 3. C. 3—13.
7. Сапожников С. П. Эколого-биогеохимические факторы среды обитания и здоровья. Чебоксары, 2001.
8. Abeywickarama B., Ralapanawa U., Chandrajith R. Geoenvironmental factors related to high incidence of human urinary calculi (kidney stones) in Central Highlands of Sri Lanka // Environ. Geochem. Health. 2016. Vol. 38(5). P. 1203—1214. 
9. Barel A., Calomme M., Timchenko A. et al. Effect of oral intake of choline-stabilized orthosilicic acid on skin, nails and hair in women with photodamaged skin // Arch. Dermatol. Res. 2005. Vol. 297(4). P. 147—153.
10. Flythe J. E., Rueda J. F., Riscoe M. K., Watnick S. Silicate nephrolithiasis after ingestion of supplements containing silica dioxide // Am. J. Kidney Dis. 2009. Vol. 54(1). P. 127—130.
11. Fujii Y., Arimura Y., Waku M. et al. A case of IgA nephropathy associated with silicosis // Nihon Jinzo Gakkai Shi. 2001. Vol. 43(7) P. 613—618. 
12. Ghahramani N. Silica nephropathy // Int J Occup Environ Med. 2010. Vol. 1(3). P. 108—115.
13. Gluhovschi G., Velciov S., Petrica L., Gluhovschi C. Aspects of renal-pulmonary pathogenic replationships in chronic kidney disease and chronic pulmonary diseases--a less-known connection // Rom. J. Intern. Med. 2014. Vol. 52(2). P. 68—77.
14. Guo J., Shi T., Cui X. et al. Effects of silica exposure on the cardiac and renal inflammatory and fibrotic response and the antagonistic role of interleukin-1 beta in C57BL/6 mice // Arch Toxicol. 2016. Vol. 90(2). P. 247—258.
15. Iavicoli I., Fontana L., Nordberg G. The effects of nanoparticles on the renal system // Crit. Rev. Toxicol. 2016. Vol. 46(6). P. 490—560.
16. Inahara M., Amakasu M., Nagata M., Yamaguchi K. Silicate calculi: report of four cases // Hinyokika Kiyo. 2002. Vol. 48(6). P. 359—362.
17. Jurkić L. M., Cepanec I., Pavelić S. K., Pavelić K. Biological and therapeutic effects of ortho-silicic acid and some ortho-silicic acid-releasing compounds: New perspectives for therapy // Nutrition & Metabolism. 2013. Vol. 10:2.
18. Keeler R. F. Silicon metabolism and silicon-protein matrix interrelationship in bovine urolithiasis //Ann. N. Y. Acad. Sci. 1963. Vol. 5(104). P. 592—611. 
19. Lang K. J., Nielsen B. D., Waite K. L. et al. Supplemental silicon increases plasma and milk silicon concentrations in horses // J. Anim. Sci. 2001. Vol. 79(10). P. 2627—2633.
20. Lee M. H., Lee Y. H., Hsu T. H. et al. Silica stone--development due to long time oral trisilicate intake // Scand. J. Urol. Nephrol. 1993. Vol. 27(2). P. 267—269.
21. Li L., Liu T., Fu C. et al. Biodistribution, excretion, and toxicity of mesoporous silica nanoparticles after oral administration depend on their shape // Nanomedicine. 2015. Vol. 11(8). P. 1915—1924.
22. Martin K. R. Silicon: the health benefits of a metalloid // Met. Ions Life Sci. 2013. Vol. 13. P. 451—473.
23. Mascarenhas S., Mutnuri S., Ganguly A. Deleterious role of trace elements — Silica and lead in the development of chronic kidney disease // Chemosphere. 2017. Vol. 177. P. 239—249.
24. Millerick-May M. L., Schrauben S., Reilly M. J., Rosenman K. D. Silicosis and chronic renal disease // Am J. Ind. Med. 2015. Vol. 58(7). P. 730—736.
25. Nishizono T., Eta S., Enokida H. et al. Renal silica calculi in an infant // Int. J. Urol. 2004. Vol. 11(2). P. 119—121.
26. Occupational Safety and Health Administration (OSHA), Department of Labor. Occupational Exposure to Respirable Crystalline Silica. Final rule. Fed Regist. 2016. Vol. 81(58). P. 16285—16890.
27. Osborne C. A., Jacob F., Lulich J. P. et al. Canine silica urolithiasis. Risk factors, detection,treatment, and prevention // Vet. Clin. North. Am. Small Anim. Pract. 1999. Vol. 29(1). P. 213—230.
28. Rathnamali B. G., Samarajiwa G., Abeyratne D. D. et al. Acute kidney injury following ingestion of plate developer (sodium metasilicate): a case report // BMC Res Notes. 2016. Vol. 22:9(1). P. 412.
29. Riccò M., Thai E., Cella S. Silicosis and renal disease: insights from a case of IgA nephropathy // Ind. Health. 2016. Vol. 54(1). P. 74—78.
30. Sponholtz T. R., Sandler D. P., Parks C. G., Applebaum K. M. Occupational exposures and chronic kidney disease: Possible associations with endotoxin and ultrafine particles // Am. J. Ind. Med. 2016. Vol. 59(1). P. 1—11.
31. Sripanyakorn S., Jugdaohsingh R., Dissayabutr W. et al. The comparative absorption of silicon from different foods and food supplements // Br. J. Nutr. 2009. Vol. 102, № 6. P. 825—834.
32. Stratta P., Canavese C., Messuerotti A. et al. Silica and renal diseases: no longer a problem in the 21st century? // J. Nephrol. 2001. Vol. 14(4). P. 228—247. 
33. Taşdemir M., Fuçucuoğlu D., Özman O. et al. Silicate calculi, a rare cause of kidney stones in children // Pediatr Nephrol. 2017. Vol. 32(2). P. 371—374.
34. Vupputuri S., Parks C. G., Nylander-French L. A. et al. Occupational silica exposure and chronic kidney disease // Ren Fail. 2012. Vol. 34(1). P. 40—46.
35. Wickett R. R., Kossmann E., Barel A. et al. Effect of oral intake of cholinestabilized orthosilicic acid on hair tensile strength and morphology in women with fine hair // Arch. Dermatol Res. 2007. Vol. 299(10). P. 499—505.
36. Zane A., McCracken C., Knight D. A. et al. Uptake of bright fluorophore coresilica shell nanoparticles by biological systems // Int. J. Nanomedicine. 2015. Vol. 20;10. P. 1547—1567.