Математическое моделирование технологий синтеза порошковых материалов для космической робототехники :: Единая Редакция научных журналов БФУ им. И. Канта

×

Ваш логин
Зарегистрироваться
Пароль
Забыли свой пароль?
Войти как пользователь:
Войти как пользователь
Вы можете войти на сайт, если вы зарегистрированы на одном из этих сервисов:
   
Наука одна: двух наук нет, как нет двух вселенных...
Александр Герцен

DOI-генератор Поиск по DOI на Crossref.org

Математическое моделирование технологий синтеза порошковых материалов для космической робототехники


Автор Юшин Д. И., Сапрыкин О. А., Толстель О. В.
Страницы 36-41
Статья Загрузить
Ключевые слова робототехника, космические технологии, искровое плазменное спекание, порошковые материалы, численное моделирование, метод конечных элементов, теория спекания
Ключевые слова (англ.) robotics, space technology, spark plasma sintering, powder materials, numerical simulation, finite element method, theory of sintering
Аннотация Проанализирован технологический процесс и дана краткая характеристика основных теоретических моделей искрового плазменного спекания (ИПС). Рассмотрен опыт применения численного моделирования методом конечных элементов (МКЭ) с использованием специализированного программного обеспечения для исследования ИПС. Сформулированы цели и задачи численного моделирования данного технологического процесса. Обозначены основные недостатки и ограничения известных методик моделирования.
Аннотация (англ.) The production process is analyzed and a brief description of the main theoretical models of spark plasma sintering (SPS) is given. The experience of the use of numerical modeling by the finite element method (FEM) using specialized software for the study of SPS is examined. Goals and objectives of numerical simulation of the process are formulated. The main shortcomings and limitations of known methods of modeling are outlined.
Список литературы 1. Suárez M., Fernández A., Menéndez J. L. et al. Challenges and Opportunities for Spark Plasma Sintering: A Key Technology for a New Generation of Materials / Sintering Applications. Publisher: InTech, Chapters published February 06, 2013.
2. Orru R., Licheri R., Mario Locci A. at al. Consolidation/synthesis of materials by electric current activated/assisted sintering // Materials Science and Engineering. 2009. Vol. R63. P. 127—287.
3. Guillon O., Gonzalez-Julian J., Dargatz B. et al. Field-Assisted Sintering Technology // Advanced Engineering Materials. 2014. Vol. 16, № 7. P. 830—849.
4. Olevsky E. Theory of sintering: from discrete to continuum // Materials Science and Engineering. 1998. Vol. R23. P. 41–100.
5. Григорьев Е. Г., Калин Б. А. Электроимпульсная технология формирования материалов из порошков. М., 2008.
6. Olevsky E., Froyen L. Constitutive modeling of spark-plasma sintering of conductive materials // ScriptaMaterialiaю 2006. Vol. 55. P. 1175—1178.
7. Olevsky E., Tikare V., Garino T. Multi-scale modeling of sintering–A Review // J. Amer. Ceram. Soc. 2006. Vol. 89. № 6. P. 1914—1922.
8. Mondalek P. Numerical modeling of the spark plasma sintering process / Doctoral thesis. MINES ParisTech, 2012.
9. Wei Li. Constitutive Modeling and Simulation of Spark Plasma Sintering with Applications to Fabrication of Functionally Structured Mono-Carbides / Ph. D. thesis. University of California, San Diego, 2013.
10. Olevsky E. A., Garcia-Cardona C., Bradbury W. L. et al. Fundamental Aspects of Spark Plasma Sintering: II. Finite Element Analysis of Scalability // J. Am. Ceram. Soc. 2012. Vol. 95, № 8. P. 2414—2422.
11. Maniere C., Durand L., Weibel A. et al. Spark plasma sintering and finite element method: from the identification of the sintering parameters of a submicronic a-alumina powder to the development of complex shapes // Acta Materialia. 2016. Vol. 102. P. 169—175.

Назад в раздел