Алгоритм и модель хранения данных при решении задачи взаимодействия спутника и плазмы методом молекулярной динамики с использованием технологии CUDA :: Единая Редакция научных журналов БФУ им. И. Канта

×

Ваш логин
Зарегистрироваться
Пароль
Забыли свой пароль?
Войти как пользователь:
Войти как пользователь
Вы можете войти на сайт, если вы зарегистрированы на одном из этих сервисов:
   
Моя вера – это вера в то, что счастье человечеству даст прогресс науки
Иван Петрович Павлов

DOI-генератор Поиск по DOI на Crossref.org

Алгоритм и модель хранения данных при решении задачи взаимодействия спутника и плазмы методом молекулярной динамики с использованием технологии CUDA


Автор Шарамет А.
Страницы 114-120
Статья Загрузить
Ключевые слова [html]математическое моделирование, метод молекулярной динамики, параллельное программирование
Ключевые слова (англ.) This article considers a parallel algorithm of the mathematical model of interaction between a charged small satellite and thermal space plasma. The main problem of the algorithm implementation is to maintain the total amount of current data for each calculator and to synchronize and minimize exchanges. The range of graphics accelerators chosen for calculation makes it possible to focus the maximum number of calculators on a single node. Synchronization problems are solved at the level of processor threads. The resulting algorithm is difficult to implement; however, it shows the most efficient use of computing resources in solving the problem, can be easily scaled for hybrid computing, and has great potential when using the MPI + CUDA + CPU threads of a hybrid programming model
Аннотация Рассмотрен параллельный алгоритм математической модели взаимодействия заряженного малого спутника и тепловой космической плазмы. Основной проблемой при реализации алгоритма является постоянное поддержание всего объема данных для каждого вычислителя в актуальном состоянии, а также синхронизация и минимизация обменов. Выбор графических ускорителей для расчета позволяет сфокусировать максимальное  количество вычислителей на одном узле. Проблемы синхронизации решаются на уровне потоков процессора. Полученный алгоритм сложен в реализации, но наиболее эффективно использует вычислительные ресурсы для решения задачи, легко масштабируется для гибридных вычислений и имеет потенциал роста при использовании MPI+CUDA+CPU threads  гибридной модели программирования.
Список литературы 1. Альперт Я. Л., Гуревич А. В., Питаевский Л. П. Искусственные спутники в разреженной плазме. М., 1964.
2. Зинин Л. В., Гальперин Ю. И., Гладышев В. А. и др. Математическая модель измерений тепловой анизотропной плазмы энерго-масс-угловыми спектрометрами ионов на заряженном спутнике // Космические исследования. 1995. Т. 33, № 6. С. 563—571.
3. Bouhram M., Dubouloz N., Hamelin M. et al. Electrostatic interaction between Interball-2 and the ambient plasma. 1. Determination of the spacecraft potential from current calculations // Ann. Geophys. 2002. Vol. 20, N 3. P. 365—376.
4. Hamelin M., Bouhram M., Dubouloz N. et al. Electrostatic interaction between Interball-2 and the ambient plasma. 2. Influence on the low energy ion measurements with Hyperboloid // Ann. Geophys. 2002. Vol. 20, N 3. P. 377—390.
5. Зинин Л. В., Гальперин Ю. И., Григорьев С. А. и др. Об измерениях эффектов поляризационного джета во внешней плазмосфере // Космические исследования. 1998. Т. 36, № 1. C. 42—52.
6. Гальперин Ю. И., Гладышев В. А., Козлов А. И. и др. Электромагнитная совместимость научного космического комплекса АРКАД-3. М., 1984.
7. Ридлер В., Торкар К., Веселов М. В. и др. Эксперимент РОН по активному регулированию электростатического потенциала космического аппарата // Космические исследования. 1998. Т. 36, № 1. С. 53—62.
8. Torkar K., Veselov M. V., Afonin V. V. et al. An experiment to study and control the Langmuir sheath around INTERBALL-2 // Ann. Geophys. 1998. Vol. 16. P. 1086—1096.
9. Zinin L., Grigoriev S., Rylina I. The models of electric field distributions near a satellite // Proceedings of the conference in memory of Yuri Galperin / eds. L. M. Zelenyi, M. A. Geller, J. H. Allen. CAWSES Handbook-001, 2004. P. 76—83.
10. Котельников В. А., Котельников М. В., Гидаспов В. Ю. Математическое моделирование обтекания тел потоками столкновительной и бесстолкновительной плазмы. М., 2010.
11. Рылина И. В., Зинин Л. В., Григорьев С. А. и др. Гидродинамический подход к моделированию распределения тепловой плазмы вокруг движущегося заряженного спутника // Космические исследования. 2002. Т. 40, № 4. С. 395—405.
12. Зинин Л. В., Ишанов С. А., Шарамет А. А. и др. Моделирование распределения ионов вблизи заряженного спутника методом молекулярной динамики. 2-D приближение // Вестник Балтийского федерального университета им. И. Канта. 2012. Вып. 10. С. 53—60.
13. Шарамет А. А., Зинин Л. В. Ишанов С. А. и др. 2D моделирование ионной тени за заряженным спутником методом молекулярной динамики // Вестник Балтийского федерального университета им. И. Канта. 2013. Вып. 10. С. 26—30.
14. Шарамет А. А., Зинин Л. В. Влияние относительной скорости спутника и плазмы на ионную тень заряженного спутника при 2D моделировании методом молекулярной динамики // Высокопроизводительные вычисления — математические модели и алгоритмы : материалы II Международной конферен¬ции, посвященной Карлу Якоби. Калининград, 3—5 октября 2013 г. Калинин¬град, 2013. С. 226—227.
15. Зинин Л. В., Шарамет А. А., Ишанов С. А. и др. Моделирование траекторий электронов и ионов тепловой плазмы в электрическом поле спутника методом молекулярной динамики // Вестник Балтийского федерального университета им. И. Канта. 2014. № 10. С. 47—52.

Назад в раздел