Анализ дифференциальной системы Лотки — Вольтерры с точки зрения теории устойчивости :: Единая Редакция научных журналов БФУ им. И. Канта

×

Ваш логин
Зарегистрироваться
Пароль
Забыли свой пароль?
Войти как пользователь:
Войти как пользователь
Вы можете войти на сайт, если вы зарегистрированы на одном из этих сервисов:
   
Дело науки - возведение всего сущего в мысль
Александр Герцен

DOI-генератор Поиск по DOI на Crossref.org

Анализ дифференциальной системы Лотки — Вольтерры с точки зрения теории устойчивости


Автор Лаговский А. Ф., Стукалин Д. Ю.
Страницы 99-103
Статья Загрузить
Ключевые слова [text]математическое моделирование, устойчивость экосистема, система«хищник — жертва»
Аннотация Исследована система «хищник — жертва» и определены параметры, при которых ее функционирование стабильно. Математически определено биологическое равновесие участвующих в ней видов.
Список литературы

1. Александров А. Ю., Платонов А. В. Математическое моделирование и ис­следование устойчивости биологических сообществ. СПб., 2006.

2. Вольтерра В. Математическая теория борьбы за существование. М., 1976.

3. Горелов А. А. Концепции современного естествознания. Курс лекций. М., 1998.

4. Жирмунский А. В. Критические уровни в развитии природных систем. Л.: Наука, 1990.

5. Марчук Г. И. Математическое моделирование в проблеме окружающей среды. М., 1982.

6. Николис Г., Пригожин И. Самоорганизация в неравновесных системах. М., 1979.

7. Опарин А. И. Жизнь, ее природа, происхождение и развитие. М., 1968.

8. Ризниченко Г. Ю., Рубин А. Б. Математические модели биологических про­дукционных процессов. М., 1993.

9. Свирежев Ю. М., Логофет Д. О. Устойчивость биологических сообществ. М., 1978.

10. Шмальгаузен И. И. Определение основных понятий и методика исследо­вания роста // Рост животных. М.; Л., 1965.

11. Medawar P. B. Size, shape and age // Essays on growth and form. London, 1945.

12. Московский центр непрерывного математического образования. URL: http://www. mccme.ru.


Назад в раздел