Optimal parameters for consequences of tangential and two-frequency decompositions :: IKBFU's united scientific journal editorial office

×

Login
Password
Forgot your password?
Login As
You can log in if you are registered at one of these services:
   
There is only one science. Two sciences are impossible as two universes are
Alexander Herzen

DOI-generator Search by DOI on Crossref.org

Optimal parameters for consequences of tangential and two-frequency decompositions

Author Buzdin A. A., Vasilieva E. A.
Pages 142-152
Article Download
Keywords systems of linear equations, incomplete block-decomposition, tangential decomposition, twofrequencies decomposition, optimal parameters.
Abstract (summary) A preconditioner for large systems of linear equations based on an incomplete block-decomposition for a block-tridiagonal matrices is considered. This method generalizes methods are developed by Buzdin and Wittum [1; 2]. A method of choosing quasioptimal parameters for consequences of tangential and two-frequencies decompositions based on analysis of model problems is developed. It’s convergence rate is better than ADI’s convergence rate in commutational case..
References

1. Buzdin К. Tangential decomposition // Computing (1998) 61:257–276.

2. Buzdin К., Wittum G. Two-Frequency Decomposition // Numerische Mathe­matik. 2004. Vol. 97. P. 269–295.

3. Wagner C. Tangential frequency filtering decompositions for symmetric matri­ces // Numer. Math. (1997) 78: 143–163.

4. Wittum G. Filternde Zerlegungen-Schnelle Löser für grosse Gleichungssysteme // Teubner Skripten zur Numerik, Band 1, Teubner-Verlag, Stuttgart, 1992.

5. Буздин А. А., Васильева Е. А., Латышев К. С. О последовательностях двух­частотных разложений // Вестник Калининградского государственного уни­верситета. 2006. Вып. 10. C. 64—69.

6. Васильева Е. А. Неполные блочные разложения, основанные на аппрокси­мантах Паде: дис. … канд. физ.-мат. наук. Калининград, 2008.

7. Gander MJ.; Nataf F. A preconditioner based on the analytic factorisation of the elliptic operator. Numerical Linear Algebra with Applications. 2000. V. 7, № 7—8. P. 543–567.

8. Самарский А. А, Николаев Е. С. Методы решения сеточных уравнений. М., 1978.

9. Федоренко Р. П. Приближенное решение задач оптимального управления. М., 1978.

10. Hackbusch W. Iterative solution of large sparse systems of equations. New York, Springer-Verlag, 1993.


Back to the section