IKBFU's Vestnik

2011 Issue №4

Back to the list Download an article

Numerical solution of the Schrödinger equations with polynomial potentials (Part I)

Pages
115-119

Abstract

The fundamental solution of a Cauchy problem and the spectral task for a one-dimensional Schrodinger equations with potential in the form of polynomials m P (x) (m  6) is solved. Numerical calculations are applied to modelling adiabatic potentials with two minima characteristic for a proton in compounds with intramolecular hydrogen bonds.

Reference

1. Арсеньев А. А. Оценка функции Грина оператора Шрёдингера // Теоре­тическая и математическая физика. 1998. Т. 115, № 1. С. 85—91.

2. Вшивцев А. С., Норин Н. В., Сорокин В. И. Решение спектральной задачи для уравнения Шрёдингера с вырожденным полиномиальным потенциалом четной степени // Теоретическая и математическая физика. 1996. Т. 109, № 1. С. 85—91.

3. Brickmann J., Zimmermann H. Lingerig Time of Proton in Well of Double-Minimum Potential of Hidrogen Bonds // The Journal of Chemical Physics. 1966. Vol. 50, 4. P. 1608—1618.

4. Квитко Г. В., Кузин Э. Л., Новиков В. И. Квантовая статистическая модель внутримолекулярного таутомерного превращения // Теоретическая и экспе­риментальная химия. 1975. Т. 11, № 6. С. 754—761.

5. Квитко Г. В., Кузин Э. Л., Шоть Д. В. Математическая модель внутримоле­кулярного таутомерного превращения и процессы релаксации протона // Вестник Российского государственного университета им. И. Канта. 2009. Вып. 10. С. 104—111.

6. Цикон Х, Фрезе Р., Кирш В., Саймон Б. Операторы Шрёдингера. М., 1990.

7. Treves F. Parametrics for a class of Schrodinger equation // Commun. Pure Appl. Math. 1995. Vol. 48, N. 1. P. 13—78.

8. Craig W., Kappler T., Straus W. Microlocal dispersive smoothing for the Schrod­inger equation // Commun. Pure Appl. Math. 1995. Vol. 48, N. 8. P. 769—860.

9. Barvinsky A. O., Osborn T. A., Gusev Yu. V. A phase-space technique for the perturba­tion expansion of Schrodinger propagators // J. Math. Phys. 1995. Vol. 36, N 1. P. 30—61.

10. Polyanin A. D. Handbook of Linear Partial Differential Equations for Engi­neers and Scientists, Chapman & Hall/CRC, 2002.  URL: http://eqworld.ipmnet. ru/en / solutionslpde/ lpde108.pdf

11. Самарский АА. Теория разностных схем. М., 1977.