Natural and medical sciences

2019 Issue №3

Back to the list Download the article

Development of musical hearing during education at different musical departments

Pages
96-106

Abstract

The article focuses on the neuropsychology of hearing and the impact of learning on the development of musical ear in various musical fields. The goal is to determine whether there is a difference in the development of tone and interval sound perception among musicians in different areas of study. Zero hypothesis (H0): The lack of dependence of the perception accuracy of sounds and intervals (absolute and relative musical ear) on the field of mu­sical training. Alternative hypothesis (H1): The accuracy of sound and interval percep­tion (absolute and relative musical ear) depends on the field of musical train­ing. Among brass and string instruments, a generally low percentage of mu­sicians have good musical ear. Findings. No dependence of the accuracy of tone perception (absolute music ear) between groups of musicians was revealed, the difference signifi­cance level between groups is p = 0.383; the highest indices in the interval perception of sounds are among keyboard players (85.71 %), the lowest are among the woodwind players (46.67 %); among vocalists, a higher percentage of tonal perception of sounds (absolute music ear) was observed when listen­ing to a musical instrument that is familiar to you — voice, but not instru­ments, the percentage of vocalists with good interval perception of sounds (relative music ear) is also high.

Reference

1.  Hyde K. L., Lerch J., Norton A. et al. The Effects of Musical Training on Structural Brain Development: a longitudinal Study // The Neurosciences and Music III: Dis­orders and Plasticity. 2009. Vol. 1169. P. 182—186.

2.  Herholz S., Zatorre R. Musical training as a framework for brain plasticity: Be­havior, function, and structure // Neuron. 2012. Vol. 76 (1). Р. 486—502.

3.  Trainor L., Shahin A., Roberts L. Understanding the Benefits of Musical Trai­ning // The Neurosciences and Music III—Disorders and Plasticity. 2009. Vol. 1169. Р. 133—142.

4.  Skoe E., Kraus N. A Little Goes a Long Way: How the Adult Brain Is Shaped by Musical Training in Childhood // The journal of neuroscience. 2012. Vol. 32 (34). P. 11507—11510.

5.  Peretz I., Zatorre R. J. The Cognitive Neuroscience of Music. Oxford, 2003.

6.  Панюшева Т. Д. Музыкальный мозг: обзор отечественных и зарубежных исследований // Асимметрия. 2008. Т. 2, № 2. C. 41—54.

7.  Wengenroth M., Blatow M., Heinecke A. et al. Increased Volume and Function of Right Auditory Cortex as a Marker for Absolute Pitch // Cerebral Cortex. 2014. Vol. 24 (5). P. 1127—1137.

8.  Weinberger N. M. Music and the Brain // Scientific American. 2004. Vol. 291 (5). P. 88—95.

9.  Deroche M. L. D., Limb C. J., Chatterjee M., Gracco V. L. Similar abilities of musi­cians and non-musicians to segregate voices by fundamental frequency // The Jour­nal of the Acoustical Society of America. 2017. Vol. 142 (4). P. 1739—1755.

10.  Proverbio A. M., Attardo L., Cozzi M., Zani A. The effect of musical practice on gesture: sound pairing // Front. Psychol. 2015. Vol. 6. P. 376.

11.  Пэтри А., Сэбин К. Наглядная статистика в медицине / пер. с англ. В. П. Леонова. М., 2003.

12.  Krishnan S., Lima C. F., Evans S. et al. Beatboxers and guitarists engage sen­sorimotor regions selectively when listening to the instruments they can play // Cerebral Cortex. 2018. Vol. 28 (11). P. 4063—4079.

13.  Wollman I., Penhune V., Segado M. et al. Neural network retuning and neural predictors of learning success associated with cello training // Proceedings of the National Academy of Sciences. 2018. Vol. 115 (26). E6056—E6064.

14.  Привес М. Г., Лысенков Н. К., Бушкович В. И. Анатомия человека. 12-е изд., перераб. и доп. СПб., 2006.

15.  Грюнер М. Г., Докери П. Клиническая нейроанатомия и неврология по Фицджеральду / пер. с англ. ; под ред. Ю. А. Щербука, А. Ю. Щербука. М., 2018.