Physics, mathematics, and technology

2019 Issue №2

Back to the list Download the article

Are there Everett worlds?



It is shown that the Everett worlds act on each other with a force that, in principle, can be measured «with a dynamometer». Hence the conclusion that these worlds really exist. It is shown that, contrary to popular belief, the ma­ny-world (Everett) and «casual» (de Broglie — Bohm) interpretations coin­ci­de. A limited path integral was used to describe coordinate measurement in terms of multiworld interpretation.


1.  Everett H. «Relative State» Formulation of Quantum Mechanics // Rev. Mod. Phys. 1957. Vol. 29,  iss. 3. P. 454—462. doi:10.1103/RevModPhys.29.454.

2.  The Many-Worlds Interpretation of Quantum Mechanics / ed. by B. S. DeWitt, N. Graham. Princeton, 1973.

3.  Tipler F. J. Testing Many-Worlds Quantum Theory by Measuring Pattern Con­vergence Rates. arXiv:0809.4422 [quant-ph].

4.  Deutsch D. Quantum Theory as a Universal Physical Theory // Int. J. Theor. Phys. 1985. Vol. 24. P. 1–41.

5. Zurek W. H. Pointer Basis of Quantum Apparatus: into what Mixture Does the Wave Packet Collapse? // Phys. Rev. D. 1981. Vol. 24, iss. 6. 1516.

6.  Zurek W. H. Environment-Induced Superselection Rules // Phys. Rev. D. 1982. Vol. 26, iss. 8. 1862.

7. Joos E., Zeh H. D. The Emergence of Classical Properties through Interaction with the Environment // Z. Phys. B. 1985. Vol. 59, iss. 2. P. 223—243.

8. Zurek W. H. Decoherence and the Transition from Quantum to Classical // Phys. Today. 1991. Vol. 44, iss. 10. P. 36—48.

9.  Tegmark M. The Interpretation of Quantum Mechanics: Many Worlds or Many Words? // Fortsch. Phys. 1998. Vol. 46, iss. 6—8. P. 855—862. arXiv:quant-ph/9709032.

10.  Bohm D. A Suggested Interpretation of the Quantum Theory in Terms of «Hid­den» Variables, I and II // Phys. Rev. 1952. Vol. 85, iss. 2. P. 166—193.

11.  Bohm D. Comments on an Article of Takabayasi Concerning the Formulation of Quantum Mechanics with Classical Pictures // Progr. Theor. Phys. 1953. Vol. 9, iss. 3. P. 273—287.

12.  Hall M. J. W., Deckert D.-A., Wiseman H. M. Quantum Phenomena Modelled by Interactions between Many Classical Worlds // Phys. Rev. X. 2014. Vol. 4, iss. 4. 041013.

13.  Sturniolo S. Computational Applications of the Many Interacting Worlds In­terpretation of Quantum Mechanics // Phys. Rev. E. 2018. Vol. 97, iss. 5. 053311.

14.  Herrmann H., Hall M. J. W., Wiseman H. M., Deckert D.-A. Ground States in the Many Interacting Worlds Approach. arXiv:1712.01918[quant-ph].

15.  Ghadimi M., Hall M. J. W., Wiseman H. M. Nonlocality in Bell's Theorem, in Bohm's Theory, and in Many Interacting Worlds Theorizing //Entropy. 2018. Vol. 20, iss. 8. P. 567—585.

16.  Tipler F. J. Hamilton — Jacobi Many-Worlds Theory and the Heisenberg Un­certainty Principle. arXiv:1007.4566 [quant-ph].

17.  Tipler F. J. Quantum Nonlocality Does Not Exist // PNAS. 2014. Vol. 111, iss. 31. P. 11281—11286.

18.  Englert B., Scully M. O., SЁussmann G., Walther H. Surrealistic Bohm Trajecto­ries // Zeitschrifft feur Naturforschung. 1992. Bdch. 47a. S. 1175—1186.

19.  Aharonov Ya., Vaidman L. About Position Measurements Which Do Not Show the Bohmian Particle Position. arXiv:quant-ph/9511005.

20.  Менский М. Б. Явление декогеренции и теория непрерывных квантовых измерений // Успехи физических наук. 1998. № 168. С. 1017—1035.

21.  Кадомцев Б. Б. Необратимость в квантовой механике // Успехи физиче­ских наук. 2003. № 173. С. 1221—1240.