The humanities and social science

2019 Issue №1

Back to the list Download the article

Theoretical analysis of fuzzy logic and Q. E. method in econo­mics



This paper analyzes the key elements of fuzzy logic and showes that through ra­tional, behavioral economics and neo-classical economics it is possible to develop models using the Q. E. methodology. Therefore, it is plausible to apply contempora­neous Q. E. methodology in combination with the rationali­ty and the behavioral approach. The fuzzy logic and the generator is the source of this mechanism for the production of the appropriate models.


1.   Calvin minds in the making. URL: othrlnks/Fuzzy/history.htm (дата обращения: 22.04.2019).

2.   Challoumis C. Methods of Controlled Transactions and the Behavior of Com­panies According to the Public and Tax Policy // Economics. 2018. № 6(1). Р. 33—43. doi:—0003.

3.   Challoumis C. The arm's length principle and the fixed length princi­ple eco­nomic analysis // World Scientific News. 2019. Vol. 115. P. 207—217.

4.   Challoumis C. Analysis of Axiomatic Methods in Economics. URL: https:// (дата обращения: 11.02.2019).

5.   Challoumis C. Fuzzy Logic Concepts in Economics. URL: https://papers. (дата обращения: 11.02.2019).

6.   Challoumis C. Multiple Axiomatics Method Through the Q. E. Meth­odolog. URL:дата обращения: 11.02.2019).

7.   Challoumis C. Quantification of Everything (a Methodology for Quantification of Quality Data with Application and to Social and Theoreti­cal Sciences). URL: (дата обращения: 11.02.2019).

8.   Colubi A., Gonzalez-Rodriguez G. Fuzziness in data analysis: Towards accura­cy and robustness // Fuzzy Sets and Systems. 2015. Vol. 281. P. 260—271. doi:

9.   Godo L., Gottwald S. Fuzzy sets and formal logics // Fuzzy Sets and Systems. 2015. Vol. 281. P. 44—60. doi:

10.   Holčapek M., Perfilieva I., Novák V., Kreinovich V. Necessary and suffi­cient conditions for generalized uniform fuzzy partitions // Fuzzy Sets and Systems. 2015. Vol. 277. P. 97—121. doi:

11.   Kacprzyk J., Zadrozny S., De Tré G. Fuzziness in database manage­ment sys­tems: Half a century of developments and future prospects // Fuzzy Sets and Sys­tems. 2015. Vol. 281. P. 300—307. doi:

12.   Klawonn F., Kruse R., Winkler R. Fuzzy clustering: More than just fuzzifi­ca­tion // Fuzzy Sets and Systems. 2015. Vol. 281. P. 272—279. doi: https://doi. org/10.1016/j.fss.2015.06.024.

13.   Nasibov E., Atilgan C., Berberler M. E., Nasiboglu R. Fuzzy joint points based clustering algorithms for large data sets // Fuzzy Sets and Systems. 2015. Vol. 270. P. 111—126. doi:

14.   Pedrycz W. From fuzzy data analysis and fuzzy regression to granu­lar fuzzy data analysis // Fuzzy Sets and Systems. 2015. Vol. 274. P. 12—17. doi: https://doi. org/10.1016/j.fss.2014.04.017.

15.   Ross T. J. Fuzzy Logic With Engineering Applications. Chichester, 2017.

16.   Stanford University. An introduction to philosophy. URL: (дата обращения: 11.02.2019).

17.   Sy Dzung Nguyen, Seung-Bok Choi. Design of a new adaptive neuro-fuzzy in­ference system based on a solution for clustering in a data potential field // Fuzzy Sets and Systems. 2015. Vol. 279. P. 64—86. doi: 2015.02.012.

18.   Trillas E. Glimpsing at guessing // Fuzzy Sets and Systems. 2015. Vol. 281. P. 32—43. doi:

19.   Verdegay J. L. Progress on Fuzzy Mathematical Programming: A per­sonal perspective // Fuzzy Sets and Systems. 2015. Vol. 281. P. 219—226. doi: https://