IKBFU's Vestnik

2019 Issue №01

Back to the list Download an article

Theoretical analysis of fuzzy logic and Q. E. method in econo­mics



This paper analyzes the key elements of fuzzy logic and showes that through ra­tional, behavioral economics and neo-classical economics it is possible to develop models using the Q. E. methodology. Therefore, it is plausible to apply contempora­neous Q. E. methodology in combination with the rationali­ty and the behavioral approach. The fuzzy logic and the generator is the source of this mechanism for the production of the appropriate models.


1.   Calvin minds in the making. URL: https://www.calvin.edu/~pribeiro/ othrlnks/Fuzzy/history.htm (дата обращения: 22.04.2019).

2.   Challoumis C. Methods of Controlled Transactions and the Behavior of Com­panies According to the Public and Tax Policy // Economics. 2018. № 6(1). Р. 33—43. doi: https://doi.org/10.2478/eoik-2018—0003.

3.   Challoumis C. The arm's length principle and the fixed length princi­ple eco­nomic analysis // World Scientific News. 2019. Vol. 115. P. 207—217.

4.   Challoumis C. Analysis of Axiomatic Methods in Economics. URL: https:// ssrn.com/abstract=3168087 (дата обращения: 11.02.2019).

5.   Challoumis C. Fuzzy Logic Concepts in Economics. URL: https://papers. ssrn.com/sol3/papers.cfm?abstract_id=3185732 (дата обращения: 11.02.2019).

6.   Challoumis C. Multiple Axiomatics Method Through the Q. E. Meth­odolog. URL: https://ssrn.com/abstract=3223642(дата обращения: 11.02.2019).

7.   Challoumis C. Quantification of Everything (a Methodology for Quantification of Quality Data with Application and to Social and Theoreti­cal Sciences). URL: https://ssrn.com/abstract=3136014 (дата обращения: 11.02.2019).

8.   Colubi A., Gonzalez-Rodriguez G. Fuzziness in data analysis: Towards accura­cy and robustness // Fuzzy Sets and Systems. 2015. Vol. 281. P. 260—271. doi: https://doi.org/10.1016/j.fss.2015.05.007.

9.   Godo L., Gottwald S. Fuzzy sets and formal logics // Fuzzy Sets and Systems. 2015. Vol. 281. P. 44—60. doi: https://doi.org/10.1016/j.fss.2015.06.021.

10.   Holčapek M., Perfilieva I., Novák V., Kreinovich V. Necessary and suffi­cient conditions for generalized uniform fuzzy partitions // Fuzzy Sets and Systems. 2015. Vol. 277. P. 97—121. doi: https://doi.org/10.1016/j.fss.2014.10.017.

11.   Kacprzyk J., Zadrozny S., De Tré G. Fuzziness in database manage­ment sys­tems: Half a century of developments and future prospects // Fuzzy Sets and Sys­tems. 2015. Vol. 281. P. 300—307. doi: https://doi.org/10.1016/j.fss.2015.06.011.

12.   Klawonn F., Kruse R., Winkler R. Fuzzy clustering: More than just fuzzifi­ca­tion // Fuzzy Sets and Systems. 2015. Vol. 281. P. 272—279. doi: https://doi. org/10.1016/j.fss.2015.06.024.

13.   Nasibov E., Atilgan C., Berberler M. E., Nasiboglu R. Fuzzy joint points based clustering algorithms for large data sets // Fuzzy Sets and Systems. 2015. Vol. 270. P. 111—126. doi: https://doi.org/10.1016/j.fss.2014.08.004.

14.   Pedrycz W. From fuzzy data analysis and fuzzy regression to granu­lar fuzzy data analysis // Fuzzy Sets and Systems. 2015. Vol. 274. P. 12—17. doi: https://doi. org/10.1016/j.fss.2014.04.017.

15.   Ross T. J. Fuzzy Logic With Engineering Applications. Chichester, 2017.

16.   Stanford University. An introduction to philosophy. URL: http://web.stanford.edu/~bobonich/glances%20ahead/IV.excluded.middle.html (дата обращения: 11.02.2019).

17.   Sy Dzung Nguyen, Seung-Bok Choi. Design of a new adaptive neuro-fuzzy in­ference system based on a solution for clustering in a data potential field // Fuzzy Sets and Systems. 2015. Vol. 279. P. 64—86. doi: https://doi.org/10.1016/j.fss. 2015.02.012.

18.   Trillas E. Glimpsing at guessing // Fuzzy Sets and Systems. 2015. Vol. 281. P. 32—43. doi: https://doi.org/10.1016/j.fss.2015.06.026.

19.   Verdegay J. L. Progress on Fuzzy Mathematical Programming: A per­sonal perspective // Fuzzy Sets and Systems. 2015. Vol. 281. P. 219—226. doi: https:// doi.org/10.1016/j.fss.2015.08.023.