IKBFU's Vestnik

2018 Issue № 2

Back to the list Download an article

Study of the main features of sedimentation in the Labrador Sea during the Late Quaternary



The authors analyzed the marine sediment core AMK-4474 recovered from the Northwest Atlantic Mid-Ocean Channel levee. Micropaleontological and grain size analyses were applied to study the main features of sedimentation process in this region during the Late Quaternary. It was shown that Late Quaternary sediments of the channel levees were accumulated during the powerful turbidity current with fluctuations signs. About 26 thousand years ago, the pelagic type of sedimentation became predominant in the studied area.


1. Баширова Л. Д., Дорохова Е. В., Сивков В. В. и др. Палеотечения в районе разлома Чарли-Гиббс в позднечетвертичное время // Океанология. 2017. Т. 57, № 3. С. 491—502.
2. Bouma A. H. Sedimentology of some Flysch Deposits: A Graphic Approach to Facies Interpretation. Amsterdam, 1962.
3. Broecker W. S. Massive iceberg discharges as triggers for global climate change // Nature. 1994. Vol. 372. P. 421—424.
4. Heinrich H. Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean during the past 130,000 years // Quaternary Research. 1988. Vol. 29 (2). P. 142—152.
5. Hesse R., Chough S. K., Rakofsky A. The North Atlantic Mid-Ocean Channel of the Labrador Sea. V. Sedimentology of a giant deep-sea channel // Canadian Journal of Earth Science. 1987. Vol. 24. P. 1595—1624.
6. Hesse R., Khodabaksh S. Significance of fine-grained sediment lofting from meltwater generated turbidity currents for the timing of glaciomarine sediment transport into the deep sea // Sedimentary Geology. 2006. Vol. 186. P. 1—11.
7. Hillaire-Marcel C., de Vernal A., Bilodeau G., Wu G. Isotope stratigraphy, sedimentation rates, deep circulation and carbonate events in the Labrador Sea during the last ~200 ka // Can. J. Earth Sci. 1994. Vol. 31. P. 63—89.
8. McCave I. N., Hall I. R. Size sorting in marine muds: Processes, pitfalls, and prospects for paleoflow-speed proxies // Geochem. Geophys. Geosyst. 2006. Vol. 7, № 10. Q10NN05.
9. Rebesco М., Hernández-Molina J., Van Rooij D., Wahlin A. Contourites and associated sediments controlled by deep-water circulation processes: State-of-the-art and future considerations // Marine Geology. 2014. Vol. 352. P. 111—154.
10. Simstich J., Sarnthein M., Erlenkeuser H. Paired δ18O signals of Neogloboquadrina pachyderma (s) and Turborotalita quinqueloba show thermal stratification structure in Nordic Seas // Mar. Micropaleontology. 2003. Vol. 48. P. 107—125.
11. Stoner J. S., Channell J. E.T., Hillaire-Marcel C. The magnetic signature of rapidly deposited detrital layers from the deep Labrador Sea: Relationship to North Atlantic Heinrich layers // Paleoceanography. 1996. Vol. 11 (3). P. 309—325.
12. Stow D.A.W., Piper D.J.W. Deep-water fine-grained sediments; history, methodology and terminology // Fine-Grained Sediments / D.A.W. Stow, D.J.W. Piper (eds.). Geological Society Special Publication. 1984. Vol. 15. P. 3—14.
13. Stow D.A.V., Wetzel A. Hemiturbidite: a new type of deep water sediment // Proc. Ocean Drilling Progr., Scient. Res. 1990. Vol. 116. P. 25—34.