IKBFU's Vestnik

2017 Issue №2

Back to the list Download an article

An elementary solving of cubic Diophantine equations

Pages
40-47

Abstract

An elementaryAn elementary approach to solving of the cubic Diophantine equations y 2  x 3  2 2s, depending on one natural parameter s is presented. The full solving for all values s is received. approach to solving of the cubic Diophantine equations y 2  x 3  2 2s, depending on one natural parameter s is presented. The full solving for all values s is received.

Reference

1. Айерлэнд К., Роузен М. Классическое введение в современную теорию чисел. М., 1987.
2. Cao Z. F. Diophantine equations and divisibility of class number of real quadratic fields // Acta Mathematica, Sinica. 1994. Vol. 37. P. 625—631.
3. Dong X. L., Cao Z. F. Diophantine Equations and Class Numbers of Real Quadratic Fields // Acta Arithmetica, XCVII. 2001. Vol. 4. P. 313—328.
4. Jacobson M. J., Williams H. C. Solving the Pell Equation. Springer Science  Business Media, LLC 2009.
5. Le M. Divisibility of class number of the real quadratic field ...Acta Mathematica, Sinica. 1990. Vol. 33. P. 565—574.
6. Lu H. W. Divisibility of class number of some real quadratic fields // Ibid. 1985. Vol. 28. P. 756—762.
7. Yuan P. Z. Divisibility of class numbers of real quadratic fields // Ibid. 1998.Vol. 41. P. 525—530.
8. Yuan P. Z. Some basic problems in Diophantine equations. Ph. D. Thesis. Sichuan University, 1997.