IKBFU's Vestnik

2017 Issue №01

Back to the list Download an article

An impacton solution for the vortex filament

Pages
53-58

Abstract

A new way of construction of exact solutions describing the shape and the dynamics of vortex filaments is described. The new method is based on application of a binary Darboux transformation to the solutions of the nonlinear Schrödinger equation. A new type of solutions is constructed: the impacton. The explicit form of the curvature and torsion of corresponding vortex filament are calculated.

Reference

1. Валландер С. В. Лекции по гидроаэромеханике. Л., 1978.
2. Голованов Н. Н. Геометрическое моделирование. М., 2002.
3. Yurova A. A. A hidden life of Peregrine's soliton: rouge waves in the oceanic depths // International Journal of Geometric Methods in Modern Physics. 2014. Vol. 11. P. 1450057:1–15.
4. Matveev V. B., Salle M. A. Darboux Transformation and Solitons. Berlin ; Heidelberg, 1991.
5. Dubard P., Gaillard P., Klein C., Matveev V. On multi-rogue wave solutions of the NLS equation and positon solutions of the KdV equation'// Eur. Phys. J. Spec. Top. 2010. Vol. 185. P. 247—258.
6. Yurov A. V., Yurov V. A. The Landau-Lifshitz equation, the NLS, and the magnetic rogue wave as a by-product of two colliding regular “positons”, Arxiv: 1701.04903.
7. Lamb G. L. Elements of soliton theory // John Wiley & Sons. 1980.