Physics, mathematics, and technology

2016 Issue №1

Back to the list Download the article

A mathematical model of conversion of GaAs substrate into thin GaNxAs1-x films obtained by nitridation of porous GaAs substrate



A mathematical model of conversion of GaAS substrate into thin GaNxAs1-x films obtained by nitridation of porous GaAs substrate are presented. The technologic conditions influence on GaNxAs1-x parameters are discussed. The comparative analysis of both experimental and theoretic data was applied for optimization nitridation conditions in order to obtain «soft» substrates for GaN growth. The results will help to decrease mechanical strains in GaN/GaAs semiconductors structures. For solving and analysis of the presented system of differential equation was used mathematical package for partial differential equation FlexPDE.


1. Kidalov V. V. et al. Properties of cubic GaN films obtained by nitridation of porous GaAs (001) // Phys. Stat. Sol. (a). 2005. Vol. 202. P. 1668.
2. Кидалов В. В. и др. Ультрафиолетовая люминесценция тонких пленок GaN, полученніх методом радикало-лучевой геттерирующей эпитаксии на пористых подложках GaAs(111) // Физика и техника полупроводников. 2003. Т. 37. С. 1303—1304.
3. Georgakilas A. et al. Correlation of the structural and optical properties of GaN grown on vicinal (0 0 1) GaAs substrates with the plasma-assisted MBE growth conditions // Journal of Crystal Growth. 2001. Vol. 227—228. P. 410—414.
4. Atsushi Masuda et al. NH3-Plasma-Nitridation Process of (100) GaAs Surface Observed by Angle-Dependent X-ray Photoelectron Spectroscopy // Jpn. J. Appl. Phys. 1995. Vol. 34, Part 1, № 2B. P. 1075—1079.
5. Bablu K. Ghosh et al. Reduced-stress GaN epitaxial layers grown on Si (1 1 1) by using a porous GaN interlayer converted from GaAs // Journal of Crystal Growth, 2003. Vol. 249. P. 422—428.
6. Kotlyarevski M. B. et al. Journal of Applied Spectroscopy. 2002. Vol. 69.
7. Kidalov V. V., Sukach G. A., Revenko A. S. The structure and luminescence of GaN films prepared by radical beam epitaxy on orous GaAs(111) substrates // Russian Journal of Physical Chemistry. 2003. Vol. 77. P. 1677—1678.
8. Tsatsulnikov A. F. et al. Formation of GaAsN nanoinsertions in a GaN matrix by metal-organic chemical vapour deposition // Semicond. Sci. Technol. 2000. Vol. 15. P. 766—769.
9. Amimer K. et al. Single-crystal hexagonal and cubic GaN growth directly on vicinal (001) GaAs substrates by molecular-beam epitaxy // Appl. Phys. Lett. 2000. Vol. 76. P. 2580—2582.
10. Bösker G. et al. Diffusion of Nitrogen from a Buried Doping Layer in Gallium Arsenide Revealing the Prominent Role of As Interstitials // Phys. Rev. Lett. 1998. Vol. 81. P. 3433—3446.
11. Stolwijk N. A. et al. Self-difusion on the arsenic sublattice in GaAs investigated by the broadening of buried nitrogen doping layers // Physica B. 1999. Vol. 273—274. P. 685—688.
12. Gosele U., Morehead F. Diffusion of zinc in gallium arsenide // J. Appl. Phys. 1981. Vol. 52. P. 4617—4619.
13. Bracht H., Stolwijk N. A., Mehrer H. Properties of intrinsic point defects in silicon determined by zinc diffusion experiments under nonequilibrium conditions // Phys. Rev. B. 1995. Vol. 52. P. 16542—16560.
14. Gösele U. Fast Diffusion in Semiconductor // Annual Review of Material Science. 1988. Vol. 18.
15. Ahlgren T. et al. Concentration of interstitial and substitutional nitrogen in GaNxAs1-x // Appl. Phys. Lett. 2002. Vol. 80. P. 2314—2316.
16. Waite T. R. Phys. Rev. 1957. Vol. 107. P. 463.
17. Zapoly P., Pandeyy R., Galez J. D. An interatomic potential study of the properties of gallium nitride // J. Phys.: Condens. Matter. 1997. Vol. 9. P. 9517—9525.
18. Limpijumnong S., Van de Walle C. G. Diffusivity of native defects in GaN // Phys. Rev. B. 2004. Vol. 69. P. 35207–1-11.