Kantian Journal

2018 Vol. 37. No. 1

Back to the list Download an article

Consequences and Design in General and Transcendental Logic



In this article, I consider Kant’s dichotomy between general and transcendental logic in light of a retrospective reconstruction of two approaches originating in 14th century scholasticism that are used to demarcate formal and material consequences. The first approach (e. g., John Buridan, Albert of Saxony, Marsilius of Inghen) holds that a consequence is formal if it is valid — because of its form only — for any matter. Since the matter of a consequence is linked to categorematic terms, its formal validity is defined as being invariant under substitutions for such terms. According to the second approach (e. g., Richard Billingham, Robert Fland, Ralph Strode, Richard Lavenham), the validity of a formal consequence stems from the formal understanding of the consequent in the consequence’s antecedent. I put forward the hypothesis that in his logical taxo­nomy, Kant attempted to reconcile the substitutional interpretation of formal consequences and a formal analysis of the transcendental relations of objects of experience. However, if we interpret the limi­tations imposed by transcendental logic on the power of judgement in the spirit of the scholastic ontology of transcendental relations, it would contradict Kant’s critique of dogmatic ontology. Following in Luciano Floridi’s path, I thus propose to consider transcendental logic, not as a system of consequences equipped with ontologically grounded transcendental limitations, but rather as the logic of design. The logic of design has the benefit of enriching traditional logical tools with a series of notions borrowed primarily from computer programming. A conceptual system designer sets out feasibility requirements and defines a system’s functions that make it possible to achieve the desired outcome using available resources. Kant’s project forbids a dogmatic appeal to the transcendental relations and eternal truths of scholasticism. However, the constitutive nature of the rules of transcendental logic in regard to the power of judgement precludes the pluralism of conceptual systems that can be interpreted within possible experience. Thus, the optimisation problem of finding the best conceptual design from all feasible designs is beyond the competence of transcendental logic.


  1. Aristotle, 1995a, Metaphysics. In: Complete Works of Aristotle, Vol. 1. The Revised Oxford Translation, One-Volume Digital Edition, ed. by J. Barnes. Princeton, pp. 3343—3717.
  2. Aristotle, 1995b, Physics. In: Ibid., pp. 699—983.
  3. Aristotle, 1995c, Prior Analytics. In: Ibid., pp. 103—262.
  4. Benthem, J. van, 1989, The Variety of Consequence, According to Bolzano. In: Studia Logica, vol. 44, no. 4, pp. 389—403.
  5. Benthem, J. van, 2003, Is There Still Logic in Bolzano’s Key? In: E. Morscher (ed.), Bernard Bolzanos Leistungen in Logik, Mathematik und Physik, Sankt Augustin. Bd. 16. pp. 11—34.
  6. Bolzano, B. 1972, The Theory of Science, ed. and transl. by R. George. Berkeley.
  7. Bonnay, D., Westerståhl, D. 2012, Consequence Mining. Constants versus Consequence Relations. In: Journal of Philosophical Logic, vol. 41, pp. 671—709.
  8. Bryushinkin, V. N. 2006, The Interaction of Formal and Transcendental logic. In: Kantovsky Sbornik [Kantian Journal], no. 26, pp. 148—167. (In Russ.)
  9. Bryushinkin, V. N. 2011, Kant’s Logic and Strawson’s Meta­physics. In: Kantovsky Sbornik [Kantian Journal], no. 37, pp. 3—7. (In Russ.)
  10. Buridan, J. 2001, Summulae de Dialectica, New Haven.
  11. Buridan, J. 2015, Treatise on Consequences, transl. by S. Read. N. Y. 
  12. Descartes, R. 1984. The Philosophical Writings of René Descartes, transl. by J. Cottingham, R. Stoothoff, D. Murdoch, vol. 1. Cambridge.
  13. Descartes, R. 1994, Discours de la Méthode / Discourse on the Method: A Bilingual Edition with an Interpretive Essay, transl. by G. Heffernan, Notre Dame.
  14. Descartes, R. 2000, Philosophical Essays and Correspondence, ed. with intro. by R. Ariew, Indianapolis; Cambridge.
  15. Dragalina-Chernaya, E. 2015, Neformal’nye zametki o logicheskoi forme [Informal notes on logical form], St. Petersburg. (In Russ.)
  16. Dragalina-Chernaya, E. 2016a, The Roots of Logical Hylomorphism. In: Logicheskie issledovaniya [Logical Investigations], vol.  22, no. 2, pp. 59—72.
  17. Dragalina-Chernaya, E. 2016b, Kant’s Dynamic Hylomorphism in Logic. In: Con-Textos Kantianos, no. 4, pp. 127—137.
  18. Dutilh Novaes, C. 2016, Medieval Theories of Consequence. In: Stanford Encyclopedia of Philosophy, Jul 7. URL: https://plato.stanford.edu/entries/consequence-medieval/(accessed 13.09.2017).
  19. Fland, R. 1976, Consequentiae (ed. by P. V. Spade). In: Mediaeval Studies, vol. 38, pp. 54—84.
  20. Floridi, L. 2017, The Logic of Design as a Conceptual Logic of Information. In: Minds and Machines, vol. 28, pp. 495—519.
  21. Gilson, É. 1913, La liberté chez Descartes et la théologie. Paris.
  22. Jaspers, K. 1957, Die großen Philosophen, München.
  23. Kant, I. 1992a, The Jäsche logic. In: Kant, I. Lectures on Logic. Transl. and ed. by J. M. Young. Cambridge.
  24. Kant, I. 1992b, The False Subtlety of the Four Syllogistic Fi­gures. In: Kant, I. Theoretical Philosophy, 1755—1770. Transl. and ed. by D. Walford, R. Meerbote. Cambridge.
  25. Kant, I. 1998, Critique of Pure Reason, transl. by P. Guyer, A. W. Wood, Cambridge.
  26. King, P. 2001, Consequence as Inference. Medieval Proof Theory 1300—1350. In: Yrjönsuuri, M. (ed.), Medieval Formal Logic. Dordrecht, pp. 117—145.
  27. Klima, G. 2004, Consequences of a Closed, Token-Based Semantics: The Case of John Buridan. In: History and Philosophy of Logic, vol. 25, no. 2, pp. 95—110.
  28. Klima, G. 2016, Consequence. In: Dutilh Novaes, C., Read, S. (eds.). The Cambridge Companion to Medieval Logic, Cambridge, pp. 216—341.
  29. Lavenham, R. 1974. Consequentiae (1370) (ed. & transl. by P. V. Spade in “Five Logical Tracts by Richard Lavenham”). In: O’Donnell, J. R. (ed.), Essays in Honor of Anton Charles Pegis, Toronto, pp. 99—112.
  30. Lisanjuk, E. N. 2002, J. Buridan on the Verification of Propositions. In: Homo philosophans. Ser. “Mysliteli,” vol. 12. Sbornik k 60-letiju professora K. A. Sergeeva. St. Petersburg, рp. 49—61. (In Russ.)
  31. Lisanjuk, E. N. 2003, Medieval Logic (XI—XIV Centuries). In: Istoriko-logicheskie issledovanija [Studies on the History of Logic]. St. Petersburg, рp. 92—110. (In Russ.)
  32. Martin, C. J. 2005, Formal Consequence in Scotus and Ockham: Towards an Account of Scotus’ Logic. In: Boulnois, O., Karger, E., Solre, J.-L., Sondag, G. (eds.), Duns Scot à Paris 1302—2002, Actes du colloque de Paris, septembre 2002. Turnout, pp. 117—150.
  33. Normore, C. 1993. The Necessity in Deduction: Cartesian Inference and its Medieval Background. In: Synthese, vol. 96, no. 3, pp. 437—454.
  34. Ockham, W. 1990, Philosophical Writings: A Selection. Indianapolis; Cambridge.
  35. Paulus Venetus, 1984, Logica Parva, transl. with an intro. and notes by A. R. Perreiah. München; Wien.
  36. Read, S. 2015, Introduction. In: Buridan, J., Treatise on Consequences, transl. by S. Read. N. Y., pp. 1—52.
  37. Simons, P. 1992, Bolzano, Tarski, and the Limits of Logic. In: Simons, P., Philosophy and Logic in Central Europe from Bolzano to Tarski: Selected Essays. Dordrecht, pp. 13—40.
  38. Strodus, R. 1493, Consequentiae cum Commento Alexandri Sermonetae et Declarationibus Getani de Thienis…, Venice.
  39. Tarski, A. 1983, Logic, Semantics, Metamathematics. Papers from 1923 to 1938, transl. by J. H. Woodger. Indianapolis.
  40. Wittgenstein, L. 1997, Remarks on Colour, ed. by G. E. M. Anscombe, transl. by L. McAlister, M. Schättle. Oxford.
  41. Wittgenstein, L. 2002, Tractatus Logico-Philosophicus, transl. by D. F. Pears, B. F. McGuiness, intro. by B. Russell. London.