Kantian Journal

2015 Issue №4(54)

Back to the list Download an article

Condorcet interpretation of probability’s theory: the use of a mathematical construct to the field of social action

DOI
10.5922/0207-6918-2015-4-4
Pages
52-64

Abstract

Probability theory, which emerged as early as the 17th century thanks to the works of Pascal and Fermat, served for a long time as a tool of professional mathematicians. It was not considered a means of rational prediction of social actions. In the late 18th century, Nicolas de Condorcet (1743—1794) first proposed to apply probability theory to moral and political disciplines thus creating a basis for social forecasting. The methods he developed made it possible to predict the results of political elections and formed the basis for the theory of social choice. However, Condorcet’s ideas on the limits of mathematical constructs’ application in social and moral sciences opened up opportunities for social philosophy to go beyond the borders of speculative metaphysics and develop as a ‘practical’ science serving both the individual and the community. This paper also assesses Condorcet’s ideas in the history of probability calculus as a method to describe historical chronology. The nature of Condorcet’s thoughts on the wide interdisciplinary opportunities of mathematics makes it possible to compare his ideas with those of other philosophers of the Enlightenment (Rousseau, Montesquieu, Voltaire, and Diderot), as well as a number of provisions of Kant’s philosophy. Despite the fact that Condorcet was not familiar with Kant’s works, his general ideas on the autonomous subject, their reason and freedom, and history and social progress bear strong similarity to Kant’s views. However, the observed differences are indicative not only of Condorcet having overcome the prejudices of his time, but also of that his version of social, ethical, and political philosophy is alternative to Kant's theory of practical reason, as well as the philosophy of history of the Enlightenment and German rationalism.

Reference

1.    Althusser, L. 2006, Politique et histoire de Machiavel à Marx, Paris, Seuil.
2.    Binoche, B. 2013, Nouvelles lectures du Tableau historique de Condorcet, Paris, Hermann.
3.    Boczko, B. 1982, Une éducation pour la démocratie: choix de textes et projets de l’époque révolutionnaire, Paris, Garnier.
4.    Canguilhem, G. 1987, La décadence de l’idée du progrès, Revue de métaphysique et de morale, Vol. 4, p. 437—454.
5.    Condorcet, N. de. 1785, Essai sur l’application de l’analyse à la probabilité des décisions rendues à la pluralité des voix, Paris, l’Imprimerie royale.
6.    Condorcet, N. de. 1804, Dissertation philosophique et politique ou refléxions sur cette question: s’il est utile aux hommes d’être trompés // Condorcet, N. de, Oeuvres complètes publiées par Mme de Condorcet, avec le concours de Cabanis, Garat et Barbier; Brunsvic et Leipsic, F. Vieweg; Paris, Heinrichs, Fuchs, Kœnig, Levrault, Schœll, 21 volumes. Vol. IX.
7.    Condorcet, N. de. 1994, Cinq mémoires sur l’instruction publique, Paris, Flammarion.
8.    Condorcet, N. de. 1793, Tableau général de la science qui a pour objet l’application du calcul aux sciences politiques et morales, Journal d’instruction sociale, 29 juin.
9.    Condorcet, N. de. 2004, Tableau historique des progrès de l'esprit humain. Projets, Esquisse, Fragments et Notes, Paris, l’INED.
10.    D’Alambert, 2000, Discours préliminaire de l’Encyclopédie, Paris, Vrin.
11.    Hume, D. 1985, Essays Moral, Political and Literary, Indianapolis, Liberty Fund.
12.    Kant, I. 1994, Metafizicheskie nachala estestvoznania [Metaphysical Foundations of Natural Science] // Kant, I. Sochinenia [Works] in 8 vol. М. Vol. 4. P. 247—372.
13.    Kant, I. 1994, Metafizika nravov [Metaphysics of Morals] // Kant, I. Sochinenia [Works] in 8 vol. М. Vol. 6. С. 224—543.
14.    Kant, I. 1994, Prilojenie o voprose, predlojennom na premiyu Korolevskoy Berlinskoy Academiey nauk v 1791 godu: kakie deistvitelniye uspekhi sozdala metafizika v Germanii so vremeni Leibnitsa I Volffa? [On the Prize Question proposed for the year 1791 by the Royal Academy of Sciences at Berlin, “What Real Progress has Metaphysics maid in Germany since the Time of Leibniz and Wolff?”] // Kant, I. Sochinenia [Works] in 8 vol. М. Vol. 7.
P. 377—459.
15.    Kintzler, C. 1984, Condorcet: l’instruction publique et la naissance du citoyen, Paris, Minerve.
16.    Madame de Staël 2000, De l’influence des passions sur le boheur des individus et des nations, Paris, Payot et Rivages.
17.    Montesquieu, Ch. 2000, Considérations sur les causes de la grandeur des Romains et de leur décadence // Montesquieu, Ch., Oeuvres complètes, Oxford, Voltaire Foundation.
18.    Picavet, Fr. 1888, La philosophie de Kant en France de 1773 à 1814, Paris, Alcan.
19.    Rashed, R. 1974, Condorcet: Mathématique et Société, Paris, Hermann.
20.    Vasiliev, V. V. 1997, “Мarginal” Metaphysics of Kant, Logos, no. 10, p. 100—107, available at: http://www. ruthenia. ru/logos/number/1997_10/04.htm (accessed 21 July 2015).
21.    Yastretbseva, A. V. (2014), Diskussii ob obchestvennom obrazovanii vo Francii v epokhu Revolutsii [Discussion about Public Education in France during the Revolution], Filosofskie nauki [Philosophical Sciences], no. 9, p. 131—145.
22.    Yastretbseva, A. V. (2015), Politika i paideia. Respublikanskiy proekt obchest¬ven-nogo obrazovaniya [Politics and Paideia. Republican Project of Public Education], Istoriya Filosofii [History of Philosophy], 2015, p. 25—45.