The Baltic Region

2022 Vol. 14 №3

Back to the list Download the article

Changing significance of Russian regions’ research and technology capacity components



This article offers data that can be used in comparative studies of research and technology capacity at the level of Russian regions. The database comprises six indicators of the development of personnel-related and financial components of a national research and technology system and research results as evinced in research publications and advanced manufacturing technologies that appeared in 2010—2020. This set of interconnected indicators makes it possible to evaluate Russian regions’ research and technology capacity and research output, which affect the degree of development of the innovative environment. The data on regional research output may be of assistance to further regional socio-economic research. The data set includes statistical indicators for 85 Russian regions for 2010—2020, as reported by ROSSTAT. The data on the number off publications and variations therein were obtained from Scopus, the largest unified curated multidisciplinary abstract and citation database. The results are presented as tables and cartographical materials (three tables and six map charts).


1. Zolotukhina, A. V. 2012, Estimated and predictive model of the scientific and technical potential of the region, Ekonomika regiona [Economy of Regions], № 1(29), p. 211—221,

2. Kondakov, I. A., Zadumkin, K. A. (eds.). 2010, Nauchno-tekhnicheskii potentsial regiona: otsenka sostoyaniya i perspektivy razvitiya [Scientific and technical potential of the region: assessment of the state and development prospects], Vologda.

3. Gulin, K. A., Mazilov, E. A., Kuz’min, I. V. et al. (eds.). 2017, Problemy i napravleniya razvitiya nauchno-tekhnologicheskogo potentsiala territorii [Problems and directions of development of the scientific and technological potential of the territories], Vologda.

4. Ali, M. A. 2021, Modeling regional innovation in Egyptian governorates: Regional knowledge production function approach, Regional Science Policy and Practice, p. 1—21,

5. De Matos, C. M., Goncalves, E., Freguglia, R. D. S. 2021, Knowledge diffusion channels in Brazil: The effect of inventor mobility and inventive collaboration on regional invention, Growth and Change, vol. 52, № 2, p. 909—932,

6. Kim, Y., Lee, K. 2015, Different Impacts of Scientific and Technological Knowledge on Economic Growth: Contrasting Science and Technology Policy in East Asia and Latin America, Asian Economic Policy Review, vol. 10, № 1, p. 43—66,

7. Qin, X., Du, D. 2019, A comparative study of the effects of internal and external technology spillovers on the quality of innovative outputs in China: The perspective of multistage innovation, International Journal of Technology Management, vol. 80, № 3—4, p. 266—291,

8. Vadia, R., Blankart, K. 2021, Regional Innovation Systems of Medical Technology: A knowledge production function of cardiovascular research and funding in Europe, REGION, vol. 8, № 2, p. 57—81,

9. Mikhaylov, A. S., Kuznetsova, T. Y., Peker, I. Y. 2019, Methods of spatial scientometrics in assessing the heterogeneity of the innovation space of russia, Perspektivy Nauki i Obrazovania, vol. 41, № 5, p. 549—563,

10. Mikhaylova, A. A., Wendt, J. A., Plotnikova, A. P. et al. 2021, A spatial scientometric analysis of knowledge production in the border cities of Russia, Izvestiya Rossiiskoi Akademii Nauk.Seriya Geograficheskaya, vol. 85, № 4, p. 500—514,

11. Regiony Rossii. Sotsial’no-ekonomicheskie pokazateli. 2018 [Regions of Russia. Socio-economic indicators. 2018], 2018, Moscow, Rosstat.

12. Regiony Rossii. Sotsial’no-ekonomicheskie pokazateli. 2021 [Regions of Russia. Socio-economic indicators. 2021], 2021, Moscow, Rosstat.