Естественные и медицинские науки

2015 Выпуск №1

Назад к списку Скачать статью

Особенности накопления тяжелых металлов лесными грибами Калининградской области

Страницы / Pages
106-117

Аннотация

Обсуждается способность дикорастущих грибов накапливать тяжелые металлы. Содержание таких элементов, как Ag, Cd, Co, Cu, Cr, Fe, Mn, Ni, Pb, в плодовых телах лесных грибов было определено методом атомно-абсорбционной спектрометрии. В результате установлено, что некоторые виды грибов имеют высокое сродство к кадмию и серебру, а наибольшей аккумулирующей способностью накапливать эти эле¬менты обладает белый гриб B. edilis. Зависимость между концентрацией металлов в верхнем слое почвы и содержанием их в плодовых телах — неочевидна, однако наблюдается тенденция к накоплению тяжелых ме¬таллов на территории, близко расположенной к источникам выбросов

Список литературы

1. Цветнова О. Б., Шатрова Н. М., Щеглов A. M. Накопление радионуклидов и тяжелых металлов грибным комплексом лесных экосистем // Науч. тр. Ин-та ядерных исследований. 2001. № 3. С. 171—176.
2. Щеглова А. И., Цветновой О. Б. Грибы — биоиндикаторы техногенного загрязнения // Природа. 2002. № 11. C. 39—46.
3. Eckl P., Hofmann W., Türk R. Uptake of natural and man-made radionuclides by lichens and mushrooms // Radiat Environ Biophys. 1986. N 25(1). P. 43—54.
4. Baeza A., Guille F. J., Salas A., Manjo J. L. Distribution of radionuclides in different parts of a mushroom: Influence of the degree of maturity // Science of the Total Environment. 2006. N 359. P. 255—266.
5. Malinowska E., Szefer P., Bojanowski R. Radionuclides content in Xerocomus badius and other commercial mushrooms from several regions of Poland // Food Che¬mistry. 2006. N 97. P. 19—24.
6. Kalač P. A review of edible mushroom radioactivity // Food Chemistry. 2001. N 75. P. 29—35.
7. Горбунов А. В., Ляпунов С. М., Окина О. И. О накоплении тяжелых и токсичных металлов базидальными грибами // Микология и фитопатология. 2013. Т. 47, вып. 1. С. 12—18.
8. Barcan V. Sh., Kovnatsky E. F., Smetannikova M. S. Berries and Edible Mush¬rooms in an Area Affected by Smelter Emissions // Water, Air, & Soil Pollution. 1998. Vol. 103. P. 173—195.
9. Ouzouni P., Petridis D., Wolf-Dietrich K., Riganakos K. A. Nutritional value and metal content of wild edible mushrooms collected from West Macedonia and Epirus, Greece // Food Chemistry. 2009. N 115. P. 1575—1580.
10. Durali M., Uluözlü Ö. D., Tüzen M. et all. Trace metal levels in mushroom samples from Ordu, Turkey // Food Chemistry. 2005. N 91. P. 463—467.
11. Поддубный А. В., Христофорова Н. К., Ковековдова Л. Т. Макромицеты как индикаторы загрязнения среды тяжелыми металлами // Микология и фитопатология. 1998. Т. 32, вып. 6. С. 47—51.
12. Попова М. Г. Cпособность дикорастущих съедобных грибов Центральной Якутии аккумулировать тяжелые металлы // Наука и образование. 2011. № 4. C. 75—77.
13. Garcia M. A., Alonso J., Melgar M. J. Bioconcentration of chromium in edible mushrooms: Influence of environmental and genetic factors // Food and Chemical Toxicology. 2013. No 58. P. 249—254.
14. Kalač P., Neznanska M., Bevilaqua D., Staiikova I. Concentrations of mercury, copper, cadmium and lead in fruiting bodies of edible mushrooms in the vicinity of a mercury smelter and a copper smelter // The Science of the Total Environment. 1996. N 177. P. 251—258.
15. Kalač P., Svoboda L. A review of trace element concentrations in edible mush¬rooms // Food Chemistry. 2000. N 69. P. 273—281.
16. Kalač P. Trace element contents in European species of wild growing edible mushrooms: A review for the period 2000—2009 // Food Chemistry. 2010. N 122.
P. 2—15.
17. Svoboda L., Havlıckova B., Kalač P. Contents of cadmium, mercury and lead in edible mushrooms growing in a historical silver-mining area // Food Chemistry. 2006. N 96. P. 580—585.
18. Petkovšek S. Al S., Pokorny B. Lead and cadmium in mushrooms from the vi¬cinity of two large emission sources in Slovenia // Science of the Total Environment. 2013. N 443. P. 944—954.
19. Gast S. H., Jansen E., Bierling J., Haanstra L. Heavy metals in Mushrooms and their relationship with soil characteristics // Chemosphere. 1988. Vol. 17, № 4.
P. 789—799.
20. Иванов А. И., Костычев А. А., Скобанев А. В. Аккумуляция тяжелых метал¬лов и мышьяка базидиомами макромицетов различных эколого-трофических и таксономических групп // Поволжский экологический журнал. 2008. № 3.
С. 190—199.
21. Rudawska M., Leski T. Macro- and microelement contents in fruiting bodies of wild mushrooms from the Notecka forest in west-central Poland // Food Chemistry. 2005. N 92. P. 499—506.
22. Falandysz J., Kunito T., Kubota R. et all. Multivariate characterization of ele¬ments accumulated in King Bolete Boletus edulis mushroom at lowland and high mountain regions // Journal of Environmental Science and Health. 2008. N 43.
P. 1692—1699.
23. Malinowskaa E., Szefera P., Falandyszb J. Metals bioaccumulation by bay bolete, Xerocomus badius, from selected sites in Poland // Food Chemistry. 2004. N 84.
P. 405—416.
24. Falandysz J., Bona H., Danisiewicz D. Silver content of wild-grown mushrooms from Northern Poland // Z Lebensm Unters Forsch. 1994. N 199. P. 222—224.
25. Pelkonen R., Alfthan G., Järvinen O. Element Concentrations in Wild Edible Mushrooms in Finland // The finnish environment. 2008. N 25. URL: http://hdl. handle.net/10138/38380 (дата обращения: 04.12.2014).
26. Svoboda L., Chrastny V. Contents of eight trace elements in edible mushrooms from a rural area // Food Additives and Contaminants. 2007. 25.01. P. 51—58.