MSC 2010: 53A45, 53C20

S. E. Stepanov (D), I. I. Tsyganok (D)

Department of Mathematics, Financial University, Russia s.e.stepanov@mail.ru, i.i.tsyganok@mail.ru doi: 10.5922/0321-4796-2024-55-1-7

On the differentiable sphere theorem for manifolds with Ricci curvatures bounded from above

In the present paper, we prove that if (M,g) is an n-dimensional $(n \ge 3)$ compact Riemannian manifold and if $Ric_{\max}(x) < n \ K_{\min}(x)$, where $K_{\min}(x) = \inf_{\pi \subset T_x M} K(\pi)$, $Ric_{\max}(x) = Ric_{X \in T_x M} Ric(X)$, $K(\cdot)$ and $Ric(\cdot)$ are the sectional and Ricci curvatures of (M,g) respectively, then (M,g) is diffeomorphic to a spherical space form \mathbb{S}^n/Γ where Γ is a finite group of isometries acting freely. In particular, if (M,g) is simply connected, then it is diffeomorphic to the Euclidian sphere \mathbb{S}^n .

Keywords: Riemannian manifold, sectional curvature, Ricci curvature, sphere theorem, spherical space form

1. Introduction: Sphere theorems

Let (M, g) be an n-dimensional $(n \ge 2)$ Riemannian manifold and $x \in M$. The *sectional curvature* in x of a 2-plane $\pi(x)$ spanned by an orthonormal basis $X, Y \in T_x M$ is given by K(X, Y) = Rm(X, Y, X, Y) where Rm denotes the Riemannian curvature tensor.

Denote by $K_{\min}(x)$ the minimum of the sectional curvature of a Riemannian manifold (M, g) at a point $x \in M$. Since the unit sphere in T_xM is a compact set, there exists a 2-plane $\pi(x) \subset T_xM$

Submitted on January 5, 2024

[©] Stepanov S. E., Tsyganok I. I., 2024

such that $K_{\min}(x) = K(\pi(x))$ — the sectional curvature in the direction of $\pi(x) \subset T_x M$. In other words,

$$K_{\min}(x) := \inf_{\pi(x) \subset T_x M} K(\pi(x)).$$

Since (M, g) is a compact manifold, we can define a scalar invariant $K_{\min} := \inf_{x \in M} K(x)$ of (M, g).

In a similar way we can define the maximum of the sectional curvature of (M, g) at a point $x \in M$. Namely, we let $K_{\max}(x) := \sup_{\pi(x) \subset T_x M} K(\pi(x))$. Next, to determine $K_{\max}(x)$ we use the condition $K_{\max} := \sup_{x \in M} K(x)$.

Berger proved in [1] the following "topological sphere theorem": a compact, simply connected Riemannian manifold (M, g) whose sectional curvatures satisfy the condition $0 < K_{\min} \le K(x) \le K_{\max} = 4K_{\min}$ at an arbitrary point $x \in M$, is either homeomorphic to \mathbb{S}^n or isometric to a compact symmetric space of rank one.

On other hands, Brendle and Shoen proved in [2] "the differential sphere theorem": if a compact, simply connected Riemannian manifold (M, g) is not locally symmetric space and its sectional curvatures satisfy the condition

$$0 \le K_{\min}(x) \le K(x) \le K_{\max}(x) = 4K_{\min}(x)$$

at an arbitrary point $x \in M$, then (M, g) is diffeomorphic to a spherical space form.

Contractions of sectional curvature leads to the *Ricci curvature Ric*. Namely, it can be show that

$$Ric(X) = \sum\nolimits_{a = 2}^{n} K(X, e_a)$$

for given any unit vector $X \in T_xM$, pick an orthonormal basis $\{e_1, ..., e_n\}$ for T_xM such that $X = e_1$. Therefore, the *Ricci tensor Ric* can be interpreted as the sum of sectional curvatures of planes spanned by a unit vector X in the tangent space and other elements of an orthonormal basis to which X belongs. In this case, we can obtain the well-known double inequality

$$(n-1)K_{\min}(x) \le Ric(X) \le (n-1)K_{\max}(x) \tag{1}$$

where $X \in T_x M$ is an arbitrary unit vector at $x \in M$. Since the unit sphere in $T_x M$ at an arbitrary point $x \in M$ is a compact set, there exists $Ric_{\min}(x) := \inf_{X \in T_x M} Ric(X)$.

Xu and Gu proved in [3] the following "differentiable sphere theorem": a compact Riemannian manifold whose Ricci curvature and sectional curvatures satisfy the inequality

$$Ric_{\min}(x) > ((n-1) - 6/5)K_{\max}(x)$$
 (2)

for any unit vector $X \in T_x M$ at an arbitrary point $x \in M$ is diffeomorphic to a spherical space form \mathbb{S}^n/Γ , where Γ is a finite group of isometries acting freely. In particular, if (M,g) is simply connected, then (M,g) is diffeomorphic to the standard Euclidian n-sphere \mathbb{S}^n .

From (1) and (2) we obtain the double inequality

$$(n-1)K_{\max}(x) - 6/5K_{\max}(x) < Ric(X) \le (n-1)K_{\max}(x),$$

where $X \in T_x M$ is an arbitrary unit vector at $x \in M$. At the same time, one can obtain from (1) and (2) that the Ricci curvature $Ric(\cdot) > 0$ at each point $x \in M$. Therefore, the above theorem is called "the differentiable sphere theorem for manifolds with positive Ricci curvature" (see [3]).

2. New version of the Sphere theorem

Since the unit sphere in T_xM at an arbitrary point $x \in M$ is a compact set, there exists $Ric_{\max}(x) := \inf_{X \in T_xM} Ric(X)$. Then we, in turn, will be able to prove our "differentiable sphere theorem" for Riemannian manifolds with Ricci curvatures bounded from above.

Theorem. Let (M,g) be an n-dimensional $(n \ge 3)$ compact Riemannian manifold and Ric be its Ricci tensor satisfying the inequality

$$Ric_{\max}(x) < nK_{\min}(x)$$
 (3)

at each point $x \in M$. Then (M,g) is diffeomorphic to a spherical space form \mathbb{S}^n/Γ . In particular, if (M,g) is simply connected, then (M,g) is diffeomorphic to the Euclidian sphere \mathbb{S}^n .

Proof. First, from (1) and (3) we obtain the double inequality

$$(n-1)K_{\min}(x) \le Ric(X) < (n-1)K_{\min}(x) + K_{\min}(x)$$

where $X \in T_x M$ is an arbitrary unit vector at $x \in M$. At the same time, one can obtain from (1) and (3) that the sectional curvature $K(\cdot) > 0$ at each point $x \in M$.

Second, we recall the definition of the curvature operator of the second kind (see [4]). Namely, the Riemann curvature tensor Rm induces an algebraic curvature operator $R: S_0^2M \to S_0^2M$ for the space S_0^2M of trace-free symmetric two-tensor fields (see, for example, [4]). The symmetries of Rm imply that R is a selfadjoint operator, with respect to the point-wise inner product on S_0^2M . In this case, R is called as the curvature operator of the second kind (see [4]). Moreover, the map $R: S_0^2M \to S_0^2M$ induces a bilinear form $\Phi: S_0^2M \times S_0^2M \to \mathbb{R}$, which is defined by the equlity $\Phi(\varphi) = g\left(R(\varphi), \varphi\right)$ for an arbitrary $\varphi \in S_0^2M$. Accordingly, we will say that R>0 if the eigenvalues of R as a bilinear form on S_0^2M are positive.

Thirdly, we will prove our theorem. The bilinear form Φ satisfies the inequality (see [5])

$$\Phi(\varphi) \ge nK_{\min}(x)\|\varphi\|^2 - R_{ij}\varphi^{ik}\varphi_k^j. \tag{4}$$

for the local components φ^{ik} and φ^j_k of an arbitrary $\varphi \in S^2_0(T_xM)$ at each point $x \in M$. In addition, the following inequality $R_{ij}\varphi^{ik}\varphi^j_k \leq Ric_{\max}(x)\|\varphi\|^2$ holds. Then from (4) we deduce the inequality

$$\Phi(\varphi) \ge \left(nK_{\min}(x) - Ric_{\max}(x) \right) \|\varphi\|^2. \tag{5}$$

In this case, we conclude from (5) that R > 0 if $Ric_{\max}(x) < n K_{\min}(x)$ at each point $x \in M$. At the same time, we know from [3] that if (M, g) be an n-dimensional $(n \ge 3)$ compact Riemannian manifold such that R is strictly positive, then M is diffeo-

morphic to a spherical space form \mathbb{S}^n/Γ . In this case, if (M,g) is simply connected, then (M,g) is diffeomorphic to the Euclidian n-sphere \mathbb{S}^n . Therefore, our theorem holds.

References

- 1. Berger, M.: Sur quelques varieties riemaniennes suffisamment pincées. Bull. Soc. Math. France, 88, 57—71 (1960).
- 2. *Brendle, S., Schoen, R. M.*: Classification of manifolds with weakly 1/4-pinched curvatures. Acta Math., 200, 1—13 (2008).
- 3. Xu, H.-W., Gu, J.-Ru.: The differentiable sphere theorem for manifolds with positive Ricci curvature. Proc. AMS, **140**:3, 1011—1021 (2012).
- 4. Cao, X., Gursky, M.J., Tran, H.: Curvature of the second kind and a conjecture of Nishikawa. Commentarii Mathematici Helvetici, **98**:1, 195—216 (2023).
- 5. Rovenski, V., Stepanov, S., Tsyganok, I.: On the Betti and Tachibana numbers of compact Einstein manifolds. Mathematics, 7, 1210 (2019).

For citation: Stepanov, S.E., Tsyganok, I.I. On the differentiable sphere theorem for manifolds with Ricci curvatures bounded from above. DGMF, 55 (1), 68—73 (2024). https://doi.org/10.5922/0321-4796-2024-55-1-7.

УДК 514.764

C. E. Степанов , И. И. Цыганок Финансовый университет при Правительстве РФ, Россия s.e.stepanov@mail.ru, i.i.tsyganok@mail.ru doi: 10.5922/0321-4796-2024-55-1-7

Теоремы о дифференцируемых сферах для многообразий с ограниченными сверху кривизнами Риччи

Поступила в редакцию 05.01.2024 г.

В представленной статье мы доказываем, что если (M,g) — это мерное $(n \ge 3)$ компактное риманово многообразие и если $Ric_{\max}(x) < nK_{\min}(x)$, где $K_{\min}(x) = \inf_{\pi \subset T_x M} K(\pi)$, $Ric_{\max}(x) = \max_{\pi \in T_x M} K(\pi)$

= $Ric_{X \in T_X M} Ric(X)$, $K(\cdot)$ и $Ric(\cdot)$ — секционная кривизна и кривизна Риччи многообразия (M,g), то оно будет диффеоморфным сферической пространственной форме \mathbb{S}^n/Γ . В частности, если (M,g) односвязное, то оно диффеоморфно евклидовой сфере \mathbb{S}^n .

Ключевые слова: риманово многообразие, секционная кривизна, кривизна Риччи, теорема о сфере, сферическая пространственная форма

Список литературы

- 1. Berger M. Sur quelques varieties iemaniennes suffisamment pincées // Bull. Soc. Math. France. 1960. Vol. 88. P. 57—71.
- 2. *Brendle S., Schoen R.M.* Classification of manifolds with weakly 1/4-pinched curvatures // Acta Math. 2008. Vol. 200. P. 1—13.
- 3. Xu H.-W., Gu J.-R. The differentiable sphere theorem for manifolds with positive Ricci curvature // Proc. AMS. 2012. Vol. 140, N23. P. 1011—1021.
- 4. Cao X., Gursky M.J., Tran H. Curvature of the second kind and a conjecture of Nishikawa // Commentarii Mathematici Helvetici. 2023. Vol. 98, № 1. P. 195—216.
- 5. Rovenski V., Stepanov S., Tsyganok I. On the Betti and Tachibana numbers of compact Einstein manifolds // Mathematics. 2019. Vol. 7. Art. № 1210.

Для цитирования: *Степанов С.Е., Цыганок И.И.* Теоремы о дифференцируемых сферах для многообразий с ограниченными сверху кривизнами Риччи // ДГМФ. 2024. № 55 (1). С. 68—73. https://doi.org/10.5922/0321-4796-2024-55-1-7.