extremals of rotation (I.E.R) (along I.E.R. geodesic curvature is proportional to Gaussian curvature). It has been proved that only trivial rotary diffeomorphisms (geodesic diffeomorphisms) have a property of reciprocity.

УДК 514.75

ДВОЙСТВЕННЫЙ ОБРАЗ РЕГУЛЯРНОЙ ГИПЕРПОЛОСЫ SH_m

С.Ю.Волкова

(Калининградское ВВМУ)

Продолжается изучение регулярных касательно (r,l)-оснащенных гиперполос SH_m [1]. Показано, что в дифференциальной окрестности 2-го порядка регулярная гиперполоса SH_m индуцирует проективное пространство \overline{P}_n (V_m), двойственное исходному $P_n(V_m)$ относительно некоторого инволютивного преобразования J, порождаемого гиперполосой SH_m . Введен в рассмотрение двойственный образ гиперполосы SH_m относительно преобразования J-нормально (l,r)-кооснащенная гиперполоса \overline{SH}_m . Дано задание гиперполосы \overline{SH}_m и описана ее геометрическая структура.

Во всей работе используются обозначения работ [1], [2], а также следующая схема индексов:

J,K,L,...=
$$\overline{1,n}$$
; p,q,r,s,t,...= $\overline{1,r}$; i,j,k,l,...= $\overline{r+1,m}$; \overline{J} , \overline{K} = $\overline{0,n}$; α,β,γ,...= $\overline{m+1,n-1}$; α̂,β̂,γ̂ = $\overline{m+1,n}$; u,v,w,...= $\overline{r+1,n-1}$; û, v̂, ŵ,...= $\overline{r+1,n}$; Â, B̂, Ĉ = $\overline{1,r}$, $\overline{m+1,n}$; a,b,c= $\overline{1,m}$, n.

1. Регулярная гиперполоса H_m называется касательно (r,l)-оснащенной, если ее базисная поверхность V_m несет двухкомпонентную сопряженную систему (Λ,L) распределений касательных r-плоскостей $\Lambda = \Lambda(A)$ и касательных l-плоскостей L = L(A)(r + l = m) [1] таких, что в каждой точке $A \in V_m$:

$$[\Lambda, L] = T_m, \Lambda(A) \cap L(A) = A, \tag{1.1}$$

где T_m - касательная гиперплоскость к V_m в точке A. Такие гиперполосы будем обозначать SH_m . Известно [1], что в репере 1-го порядка $R^1 = \{A_J\}$ гиперполоса SH_m задается уравнениями (соответствующие замыкания не выписываются):

$$\begin{cases} \omega_{o}^{\alpha} = 0, & \omega_{\alpha}^{n} = 0, & \omega_{p}^{n} = \Lambda_{pq}^{n} \omega^{q}, & \omega_{i}^{n} = L_{ij}^{n} \omega^{j}, \\ \omega_{p}^{\alpha} = \Lambda_{pq}^{\alpha} \omega^{q}, & \omega_{i}^{\alpha} = L_{ij}^{\alpha} \omega^{j}, & \omega_{p}^{i} = \Lambda_{pb}^{i} \omega^{b}, \\ \omega_{i}^{p} = L_{ib}^{p} \omega^{b}, & \omega_{\alpha}^{p} = N_{\alpha q}^{p} \omega^{q}, & \omega_{\alpha}^{i} = N_{\alpha j}^{i} \omega^{j}. \end{cases}$$

$$(1.2)$$

где

$$\begin{cases} \Lambda_{[pq]}^{n} = 0, \ L_{[ij]}^{n} = 0, \ \Lambda_{[pq]}^{\alpha} = 0, \ L_{[ij]}^{\alpha} = 0, \\ N_{\alpha}^{[pq]} = N_{\alpha S}^{[p} \Lambda_{n}^{q]S} = 0, \ N_{\alpha}^{[ij]} = N_{\alpha K}^{[i} \Lambda_{n}^{j]K} = 0. \end{cases}$$
(1.3)

Отметим, что условия

$$L_{ip}^{n} = \Lambda_{pi}^{n} = 0, \quad L_{pi}^{\alpha} = \Lambda_{ip}^{\alpha} = 0$$
 (1.4)

необходимы и достаточны, чтобы касательные распределения Λ -плоскостей и L-плоскостей были сопряженными. Геометрически это означает, что при инфинитезимальных смещениях плоскости одного семейства касательных плоскостей (Λ или L) вдоль интегральных линий другого семейства касательных плоскостей (L или Λ) эта плоскость не выходит из соответствующей касательной плоскости T_m базисной поверхности V_m гиперполосы SH_m [3].

Семейство главных касательных гиперплоскостей $\tau = \tau(A)$ порождает в каждой точке $A \in V_m$ следующие две плоскости:

а) плоскость $\Phi = \chi_{\text{n-r-1}}$ - характеристику семейства главных касательных гиперплоскостей $\{\tau\}$, полученную при смещениях гиперплоскости τ вдоль интегральных линий Λ - распределения:

$$\omega_o^{\hat{u}} = 0, \quad \omega_o^p = \mu^p \theta, \quad D\theta = \theta \Lambda \theta_o^o, \quad \nabla \mu^p - \mu^p (\theta_o^o + \omega_o^o) = \overline{\mu}_1^p \theta; \quad (1.5)$$

б) плоскость $\Psi = \chi_{n-l-1}$ -характеристику семейства главных касательных гиперплоскостей $\{\tau\}$, полученную при смещениях гиперплоскости τ вдоль интегральных линий L-распределения:

$$\omega_0^{\hat{A}} = 0, \quad \omega_0^i = \mu^i \theta, \quad D\theta = \theta \Lambda \theta_0^o, \quad \nabla \mu^i = \mu^i (\theta_0^o + \omega_0^o) + \mu_1^i \theta. \tag{1.6}$$

Таким образом, с базисной поверхностью $V_m \subset SH_m$ ассоциируюся два семейства плоскостей Φ и Ψ , которые назовем в дальнейшем Φ -распределением и Ψ -распределением, причем в каждой точке $A \in V_m$ выполняется соотношение:

$$\Phi \cap \Psi = \chi_{n-r-1} = \chi. \tag{1.7}$$

Наконец, отметим, что условия

$$N_{\alpha p}^{i} = N_{\alpha i}^{p} = 0 \tag{1.8}$$

означают, что при инфинитезимальных смещениях характеристики χ (1.7) гиперполосы SH_m вдоль интегральных линий Λ -распределения (1.5) она остается в Ψ -плоскости, а при инфинитезимальных смещениях характеристики χ вдоль интегральных линий L-распределения (1.6) она остается в Φ -плоскости.

2. Для того чтобы воспользоваться двойственной теорией $P(\Lambda,L)$ -распределений [2] при исследовании гиперполосы SH_m , необходимо вместо тензора $H^n_{\alpha\beta}$ [2], который для гиперполосы SH_m просто не определен ($\omega^n_{\alpha} = H^n_{\alpha\beta}\omega^{\beta}$, где $\omega^n_{\alpha} = 0$ и $\omega^{\beta} = 0$), построить новый тензор такого же строения. Следуя работе [4], для гиперполосы SH_m введем в рассмотрение невырожденный тензор $b^n_{\alpha\beta}$ и ему взаимный $b^{\alpha\beta}_n$, удовлетворяющий условиям:

$$\begin{cases} \nabla b_{\alpha\beta}^{n} + b_{\alpha\beta}^{n} \omega_{o}^{o} = b_{\alpha\beta b}^{n} \omega^{b}, \\ b_{\alpha\beta}^{n} b_{n}^{\beta\gamma} = \delta_{\alpha}^{\gamma}, & \nabla b_{n}^{\alpha\beta} - b_{n}^{\alpha\beta} \omega_{o}^{o} = -b_{n}^{\alpha\gamma} b_{n}^{\beta\eta} b_{\gamma\eta b}^{n} \omega^{b}, \\ H = \det \left\| b_{\alpha\beta}^{n} \right\| \neq 0, & \dim H + (n - m - 1)(\omega_{o}^{o} + \omega_{n}^{n}) - 2\omega_{\alpha}^{\alpha} = \widetilde{H}_{b}^{o} \omega^{b}, \\ \nabla b_{\alpha\beta b}^{n} + 2b_{\alpha\beta b}^{n} \omega_{o}^{o} + b_{\alpha\beta}^{n} (\omega_{b}^{o} - \Lambda_{bc}^{n} \omega_{n}^{c}) \equiv 0, \end{cases}$$

$$(1.9)$$

где

$$\widetilde{H}_{b}^{o} = b_{n}^{\alpha\beta} b_{\beta\alpha b}^{n}$$
.

В силу того, что

$$\Lambda \stackrel{\text{def}}{=} \left| \Lambda_{pq}^{n} \right| \neq 0, \quad L \stackrel{\text{def}}{=} \left| L_{ij}^{n} \right| \neq 0, \tag{1.10}$$

можно ввести в рассмотрение обратные тензоры Λ_n^{pq} и Λ_n^{ij} , компоненты которого определяются из соотношений

$$\Lambda_n^{pq} \Lambda_{qt}^n = \delta_t^p, \quad L_{ij}^n L_n^{jk} = \delta_i^k$$
 (1.11)

и удовлетворяют уравнениям:

$$\nabla L_n^{ij} - L_n^{ij} \omega_o^o = -L_n^{ik} L_n^{il} L_{klb}^n \omega^b, \nabla \Lambda_n^{pq} - \Lambda_n^{pq} \omega_o^o = -\Lambda_n^{ps} \Lambda_n^{qt} \Lambda_{stb}^n \omega^b \quad (1.12)$$

функции Λ и L (1.10)- относительные инварианты 2-го порядка:

$$\begin{cases} d \ln \Lambda = 2\omega_{p}^{p} - r(\omega_{o}^{o} + \omega_{n}^{n}) + \widetilde{\Lambda}_{b}^{o} \omega^{b}, \\ d \ln L = L_{n}^{ij} dL_{ji}^{n} = 2\omega_{i}^{i} - l(\omega_{o}^{o} + \omega_{n}^{n}) + \widetilde{L}_{b}^{o} \omega^{b}, \end{cases}$$
(1.13)

где

$$\widetilde{\Lambda}_b^o = \Lambda_n^{pq} \Lambda_{pqb}^n, \quad \widetilde{L}_b^o = L_n^{ij} L_{ijb}^n.$$
 (1.14)

3. Введем в рассмотрение систему из $(n+1)^2$ форм Пфаффа $\overline{\omega}_{\overline{K}}^J$ [2]:

$$\begin{split} &\overline{\omega}_{o}^{p}=\omega_{o}^{p},\ \overline{\omega}_{o}^{i}=\omega_{o}^{i},\ \overline{\omega}_{o}^{i}=\omega_{o}^{i},\ \overline{\omega}_{o}^{\hat{\alpha}}=\omega_{o}^{\hat{\alpha}}=0,\ \overline{\omega}_{n}^{n}=\omega_{n}^{n}=0,\\ &\overline{\omega}_{n}^{o}=\omega_{n}^{o},\ \overline{\omega}_{n}^{p}=-\Lambda_{n}^{pq}\omega_{q}^{o},\ \overline{\omega}_{n}^{j}=-L_{n}^{ij}\omega_{i}^{o},\ \overline{\omega}_{n}^{p}=-b_{n}^{p\alpha}\omega_{\alpha}^{o},\\ &\overline{\omega}_{n}^{n}=\omega_{n}^{n}-\frac{1}{n+1}\widetilde{\Phi}_{b}^{o}\omega_{o}^{b},\ \overline{\omega}_{p}^{o}=\Lambda_{pq}^{n}\omega_{n}^{q},\ \overline{\omega}_{p}^{i}=-\Lambda_{qp}^{n}L_{n}^{ij}\omega_{j}^{q},\\ &\overline{\omega}_{p}^{\alpha}=-\Lambda_{qp}^{n}b_{n}^{\alpha\beta}\omega_{\beta}^{q},\ \overline{\omega}_{p}^{n}=-\Lambda_{pq}^{n}\omega^{q},\ \overline{\omega}_{o}^{o}=\omega_{o}^{o}-\frac{1}{n+1}\widetilde{\Phi}_{b}^{o}\omega_{o}^{b},\\ &\overline{\omega}_{p}^{f}=\omega_{p}^{f}+\Lambda_{n}^{fq}\Lambda_{qpb}^{n}\omega_{o}^{b}-\frac{1}{n+1}\delta_{p}^{f}\widetilde{\Phi}_{b}^{o}\omega_{o}^{b},\ \overline{\omega}_{i}^{o}=L_{ji}^{n}\omega_{n}^{j},\\ &\overline{\omega}_{i}^{k}=\omega_{i}^{k}+L_{n}^{kj}L_{jib}^{n}\omega_{o}^{b}-\frac{1}{n+1}\delta_{i}^{k}\widetilde{\Phi}_{b}^{o}\omega_{o}^{b},\ \overline{\omega}_{i}^{p}=-L_{ij}^{n}\Lambda_{n}^{pq}\omega_{q}^{j},\\ &\overline{\omega}_{i}^{\alpha}=-L_{ji}^{n}b_{n}^{\alpha\beta}\omega_{j}^{j},\ \overline{\omega}_{i}^{n}=-L_{ji}^{n}\omega_{o}^{j},\ \overline{\omega}_{\alpha}^{o}=b_{\beta\alpha}^{n}\omega_{n}^{\beta},\\ &\overline{\omega}_{a}^{i}=-L_{n}^{ij}b_{n}^{n}\omega_{j}^{\beta},\ \overline{\omega}_{a}^{p}=-\Lambda_{n}^{pq}b_{\beta\alpha}^{n}\omega_{q}^{\beta},\\ &\overline{\omega}_{a}^{i}=-L_{n}^{ij}b_{n}^{n}\omega_{j}^{\beta},\ \overline{\omega}_{\alpha}^{p}=-\Lambda_{n}^{pq}b_{\beta\alpha}^{n}\omega_{q}^{\beta},\\ &\overline{\omega}_{a}^{i}=-L_{n}^{ij}b_{n}^{n}\omega_{j}^{\beta},\ \overline{\omega}_{\alpha}^{p}=-\Lambda_{n}^{pq}b_{\beta\alpha}^{n}\omega_{q}^{\beta},\\ &\overline{\omega}_{a}^{i}=-L_{n}^{ij}b_{n}^{n}\omega_{j}^{\beta},\ \overline{\omega}_{a}^{p}=-\Lambda_{n}^{pq}b_{\beta\alpha}^{n}\omega_{q}^{\beta},\\ &\overline{\omega}_{a}^{i}=-L_{n}^{ij}b_{n}^{n}\omega_{j}^{\beta},\ \overline{\omega}_{a}^{p}=-\Lambda_{n}^{pq}b_{n}^{n}\omega_{q}^{\beta},\\ &\overline{\omega}_{a}^{i}=-L_{n}^{ij}b_{n}^{n}\omega_{j}^{\beta},\ \overline{\omega}_{a}^{p}=-\Lambda_{n}^{pq}b_{n}^{n}\omega_{q}^{\beta},\\ &\overline{\omega}_{a}^{i}=-L_{n}^{ij}b_{n}^{n}\omega_{j}^{\beta},\ \overline{\omega}_{a}^{p}=-\Lambda_{n}^{pq}b_{n}^{n}\omega_{q}^{\beta},\\ &\overline{\omega}_{a}^{i}=-L_{n}^{ij}b_{n}^{n}\omega_{j}^{\beta},\ \overline{\omega}_{a}^{p}=-\Lambda_{n}^{pq}b_{n}^{n}\omega_{q}^{\beta},\\ &\overline{\omega}_{a}^{i}=-L_{n}^{ij}b_{n}^{n}\omega_{j}^{\beta},\ \overline{\omega}_{a}^{i}=-L_{n}^{ij}b_{n}^{n}\omega_{j}^{\beta},\\ &\overline{\omega}_{a}^{i}=-L_{n}^{ij}b_{n}^{n}\omega_{j}^{\beta},\ \overline{\omega}_{a}^{i}=-L_{n}^{ij}b_{n}^{n}\omega_{j}^{\beta},\\ &\overline{\omega}_{a}^{i}=-L_{n}^{ij}b_{n}^{n}\omega_{j}^{\beta},\ \overline{\omega}_{a}^{i}=-L_{n}^{ij}b_{n}^{n}\omega_{j}^{\beta},\\ &\overline{\omega}_{a}^{i}=-L_{n}^{ij}b_{n}^{n}\omega_{j}^{\beta},\ \overline{\omega}_{a}^{i}=-L_{n}^{ij}b_{n}^{n}\omega_{j}^{\alpha},\\ &\overline{\omega}_{a}^$$

$$\overline{\omega}_{\alpha}^{\beta} = \omega_{\alpha}^{\beta} + b_{n}^{\beta\gamma} b_{\gamma\alpha b}^{n} \omega_{o}^{b} - \frac{1}{n+1} \delta_{\alpha}^{\beta} \widetilde{\Phi}_{b}^{o} \omega_{o}^{b},$$

где

$$\widetilde{\Phi}_{h}^{o} = \widetilde{\Lambda}_{h}^{o} + \widetilde{L}_{h}^{o} + \widetilde{H}_{h}^{o}. \tag{1.16}$$

Формы $\overline{\omega}_{\overline{K}}^{\overline{J}}$ удовлетворяют структурным уравнениям проективного пространства \overline{P}_n и задают инфинитезимальные перемещения тангенциального репера $\{\tau_J\}$:

$$d\tau_{J} = \overline{\omega}_{\bar{I}}^{\bar{K}} \tau_{\bar{K}}, \qquad (1.17)$$

где

$$\begin{split} &\tau_{o} \!\!=\!\! \rho[A_{o}A_{1}...A_{n-1}],\, \tau_{n} \!\!=\!\! \rho[A_{n}A_{1}...A_{n-1}],\, (\rho \!\!=\!\! \frac{1}{{}^{n+1}\!\sqrt{\Lambda LH}}),\\ &\tau_{p} \!\!=\!\! \rho\sum_{q}\Lambda_{qp}^{n}\left[\;A_{o}A_{1}...A_{q-1}A_{n}A_{q+1}...A_{r},\, A_{r+1}...A_{n-1}\right],\\ &\tau_{i} \!\!=\!\! \rho\sum_{j}L_{ji}^{n}\left[\;A_{o}A_{1}...A_{r}A_{r+1}...A_{j-1}A_{n}A_{j+1}...,\! A_{m}A_{m+1}...A_{n-1}\right],\\ &\tau_{\alpha} \!\!=\!\! \rho\sum_{\beta}b_{\beta\alpha}^{n}\left[A_{o}A_{1}...A_{m}A_{m+1}...A_{\beta-1}A_{n}A_{\beta+1}...A_{n-1}\right], \end{split}$$

Используя формулы (1.2)-(1.4), (1.8)-(1.17) и следуя работам [2],[4], можно показать, что преобразование J: $\omega_{\bar{J}}^{\bar{K}} \to \overline{\omega}_{\bar{J}}^{\bar{K}}$ форм $\omega_{\bar{J}}^{\bar{K}}$ проективного пространства P_n по закону (1.15) является инволютивным, т.е. $J=J^{-1}$. Отсюда следует

Теорема 1. Регулярная гиперполоса SH_m во второй дифференциальной окрестности ее образующего элемента индуцирует проективное пространство $\overline{P}_n(V_m)$, двойственное проективному пространству $P_n(V_m)$ относительно инволютивного преобразования J форм $\omega_{\overline{J}}^{\overline{K}}$ по закону (1.15) [4].

4. Определение. Регулярную гиперполосу H_m назовем нормально (l,r)-кооснащенной гиперполосой, если ее базисная поверхность V_m оснащена двумя полями нормальных плоскостей N_{n-l} и N_{n-r} , т.е. в каждой точке $A \in V_m$ выполняются соотношения:

$$N_{n-l} \cap N_{n-r} = N_{n-m}$$

где N_{n-m} - нормаль 1-го рода гиперполосы H_m в смысле Нордена-Чакмазяна.

Дифференциальные уравнения регулярной гиперполосы $SH_m \subset \overline{P}_n$, двойственной данной регулярной гиперполосе $SH_m \subset P_n$ относительно инволютивного преобразования J (1.15), в силу теоремы 1 имеют аналогичный вид

$$\overline{\omega}_{o}^{\hat{\alpha}} = 0, \quad \overline{\omega}_{\alpha}^{n} = 0, \quad \overline{\omega}_{p}^{n} = \overline{\Lambda}_{pq}^{n} \omega^{q}, \quad \overline{\omega}_{i}^{n} = \overline{L}_{ij}^{n} \overline{\omega}^{j},
\overline{\omega}_{p}^{\alpha} = \overline{\Lambda}_{pq}^{\alpha} \overline{\omega}^{q}, \quad \overline{\omega}_{i}^{\alpha} = \overline{L}_{ij}^{\alpha} \overline{\omega}^{j}, \quad \overline{\omega}_{p}^{i} = \overline{\Lambda}_{pb}^{i} \overline{\omega}^{b},
\overline{\omega}_{i}^{p} = \overline{L}_{ib}^{p} \overline{\omega}^{b}, \quad \overline{\omega}_{\alpha}^{p} = \overline{N}_{\alpha q}^{p} \overline{\omega}^{q}, \quad \overline{\omega}_{\alpha}^{i} = \overline{N}_{\alpha j}^{i} \overline{\omega}^{j},$$
(1.18)

где

$$\begin{cases} \overline{\Lambda}_{pq}^{n} = -\Lambda_{pq}^{n}, \ \overline{L}_{ij}^{n} = -L_{ij}^{n}, \ \overline{\Lambda}_{pq}^{\alpha} = -\Lambda_{pt}^{n} b_{n}^{\alpha\beta} N_{\beta q}^{t}, \\ \overline{L}_{ij}^{\alpha} = -L_{ik}^{n} b_{n}^{\alpha\beta} N_{\beta j}^{k}, \ \overline{\Lambda}_{pb}^{i} = -\Lambda_{qp}^{n} L_{n}^{ik} L_{kb}^{q}, \\ \overline{L}_{ib}^{p} = -L_{ij}^{n} \Lambda_{n}^{pq} \Lambda_{qb}^{j}, \ \overline{N}_{\alpha q}^{p} = -\Lambda_{n}^{pt} b_{\alpha\beta}^{n} \Lambda_{tq}^{\beta}, \ \overline{N}_{\alpha j}^{i} = -L_{n}^{ik} b_{\alpha\beta}^{n} L_{kj}^{\beta} \end{cases}$$

$$\begin{cases} \overline{\Lambda}_{[pq]}^{n} = 0, \ \overline{L}_{[ij]}^{n} = 0, \ \overline{\Lambda}_{[pq]}^{\alpha} = 0, \ \overline{L}_{[ij]}^{\alpha} = 0, \\ \overline{N}_{\alpha s}^{[pq]} = \overline{N}_{\alpha s}^{[p} \overline{\Lambda}_{n}^{q]s} = 0, \ \overline{N}_{\alpha l}^{[ij]} = \overline{N}_{\alpha k}^{[i} \overline{\Lambda}_{n}^{-jlk} = 0. \end{cases}$$

$$(1.20)$$

Нормали N_{n-l} и N_{n-r} пересекают касательную плоскость T_m соответственно по г-мерной плоскости Λ и l -мерной плоскости L. В каждой точке $A \in V_m$, таким образом, определяются две плоскости $\Phi = [\chi, L], \ \Psi = [\chi, \Lambda], \$ удовлетворяющие условиям:

$$\Psi \subset N_{n-1}$$
, $\Phi \subset N_{n-r}$.

При фиксации точки А плоскости Λ , L, χ , Ψ , Φ , N_{n-r} , N_{n-l} неподвижны, что приводит к заданию (1.18-(1.20) нормально (l,r)-кооснащенной гиперполосы \overline{SH}_m относительно тангенциального репера { $\tau_{\overline{K}}$ }. При этом условия (1.4), (1.8) данной гиперполосы SH_m двойственны соответственно условиям:

$$\overline{\Lambda}_{pq}^{n} = \overline{L}_{jp}^{n} = 0, \ \overline{\Lambda}_{pj}^{\alpha} = \overline{L}_{jp}^{\alpha} = 0;$$
 (1.21)

$$\overline{N}_{\alpha p}^{i} = 0, \ \overline{N}_{\alpha i}^{p} = 0.$$
 (1.22)

Геометрическая интерпретация (1.21) заключается в следующем: при инфинитезимальном смещении Ф-плоскости (Ψ-плоскости) вдоль линий (1.5) [(1.6)] она проходит через соответствующую характеристику χ гиперполосы \overline{SH}_m . Условия (1.22) означают, что при бесконечно малых смещениях плоскости $T_m \subset \overline{SH}_m$ вдоль линий (1.5)[(1.6)] она проходит через L-плоскость [Λ -плоскость].

Резюмируя, приходим к предложению:

Теорема 2. В дифференциальной окрестности 2-го порядка касательно (r,l)-оснащенная гиперполоса SH_m (1.2), (1.3) порождает относительно инволютивного преобразования структурных форм по закону (1.15) двойственный ей образ-нормально (l,r)-кооснащенную гиперполосу \overline{SH}_m , определяемую уравнениями (1.18), (1.20) относительно тангенциального репера (1.17).

Библиографический список

- 1. *Волкова С.Ю*. Касательно (r,l)-оснащенные гиперполосы проективного пространства // Дифференциальная геометрия многообразий фигур. Калининград, 1994. Вып. 25. С.28-37.
- 2. Волкова С.Ю. О двойственных проективных связностях $P(\Lambda,L)$ -распределения // Дифференциальная геометрия многообразий фигур. Калининград, 1993. Вып.24. С.28-37.
- 3. Акивис М.А. О строении двухкомпонентных сопряженных систем // Тр. геом. семинара / ВИНИТИ. М., 1966. Т.1. С.7-31.

4. Столяров А.В. Двойственная теория регулярных гиперполос и ее приложения. Чебоксары, 1994. 116 с.

S.Yu.Volkova

DUAL IMAGE OF REGULAR HIPERSTRIP SH_m

The study of regular tangentially-equipped hyperstrips SH_m is continued. It is shown that in the differential neighborhood of the second order regular hyperstrip SH_m induce a projective space, dual to the original with respect to some involute transformation, generated by the hyperstrip SH_m . Dual image of the hyperstrip SH_m is introduced with respect to an involute transformation i.e. normally skewequipped hyperstrip \overline{SH}_m . Representation of the hyperstrip \overline{SH}_m is given and described its geometric structure.

УДК 514.76+514.85

О РИМАНОВЫХ МНОГООБРАЗИЯХ С ИНТЕГРИРУЕМЫМИ УРАВНЕНИЯМИ ГЕОДЕЗИЧЕСКИХ

А. А. Зайцев

(Калининградский государственный университет)

Рассматривается семейство римановых многообразий, обладающих свойством: в каждом из них уравнения геодезических допускают первый интеграл, выражающийся через метрику другого многообразия. Этого свойства достаточно для вычисления их метрик в предположении, что метрики диагональны. Уравнения геодезических в них интегрируются в квадратурах.

1. Рассмотрим множество L_n n-мерных римановых многообразий, удовлетворяющих условию: $M^n \in L_n$, если уравнения геодезических в M^n допускают первый интеграл вида $F(x,\dot{x}) = \frac{1}{2}\,b_{ij}(x)\dot{x}^i\dot{x}^j$, причем в каждой точке T(M): $dF(x,\dot{x}) \wedge dT(x,\dot{x}) \neq 0$, $T(x,\dot{x}) = \frac{1}{2}\,g_{ij}(x)\dot{x}^i\dot{x}^j$ - кинетическая энергия в M^n (g_{ij} -компоненты метрического тензора в M^n). Их исследованными случаями являются многообразия Лиувилля с метрикой $ds^2 = v(x)\sum_{i=1}^n \frac{\left(dx^i\right)^2}{s^i(x^i)}$, $v(x) = \sum_{i=1}^n v^i(x^i)$

[1,с.170], [2,с.91]; эллипсоиды, уравнения геодезических на которых проинтегрировал Якоби [3], а также римановы многообразия с метрикой Штеккеля [2,с.93].

B [4] установлен следующий результат: если $\,\hat{g}^{ij} = g^{ik}g^{jl}b_{kl}^{}$, то

$$g^{m(i}\partial_{m}\hat{g}^{jk)} - \hat{g}^{m(i}\partial_{m}g^{jk)} = 0, \quad \partial_{m}g^{jk} = \frac{\partial g^{jk}}{\partial x^{m}}.$$
 (1)