Yu. Shevchenko

THREE BUNDLES OF A PROJECTIVE GROUP

The transformation group GP(n) of n-measurement projective space P_n , allocated by a factorization from a linear group GL(n+1) is considered. A projective group GP(n) is contain affine group GA(n), coaffine group $GA^*(n)$ and linear group GL(n) being subgroups of stationarities of a hyperplane P_{n-1} , point A and 0-pair (A,P_{n-1}) , $A\not\in P_{n-1}$. It is shown, that the projective group GP(n) is represented by the way of three main bundles, standard layers which one the subgroups GA(n), $GA^*(n)$ and GL(n) are: 1) affine frames over dual projective space of hyperplanes $P_n^* = Gr(n-1,n)$ — manifold of Grassmann of hyperplanes; 2) coaffine frames over initial projective space $P_n = Gr(0,n)$ — manifold of Grassmann of points; 3) linear frames with connection over 2n-measurement space of 0-pairs Π_{2n} — subset not incident pairs (A,P_{n-1}) of direct product $P_n \times P_n^* = Gr(0,n) \times Gr(n-1,n)$.

УДК 514.75

С.Н. Юрьева

(Калининградский государственный университет)

ГИПЕРПОЛОСНОЕ РАСПРЕДЕЛЕНИЕ КОРАЗМЕРНОСТИ ДВА АФФИННОГО ПРОСТРАНСТВА \mathbf{A}_{n}

Изучается дифференциальная геометрия гиперполосных распределений (n-2)-мерных линейных элементов аффинного пространства $A_{\rm n}$.

Схема использования индексов такова:

i, j, k, l, s, t =
$$\overline{1, n-2}$$
; $\alpha, \beta, \gamma, \eta = n-1, n$;
a, b, c = $\overline{1, n-1}$, I, J, K, L = $\overline{1, n}$.

1. Рассмотрим n-мерное аффинное пространство A_n со структурными уравнениями

$$D\omega^{I} = \boldsymbol{\varpi}^{L} \wedge \boldsymbol{\omega}_{L}^{I}, \ D\boldsymbol{\omega}_{I}^{K} = \boldsymbol{\omega}_{I}^{L} \wedge \boldsymbol{\omega}_{L}^{K}, \tag{1}$$

отнесенное к подвижному реперу $(A, \overrightarrow{e_1}, \overrightarrow{e_2}, ..., \overrightarrow{e_n})$, дифференциальные уравнения инфинитезимального перемещения которого имеют вид

$$d\vec{A} = \omega^K \vec{e}_{\scriptscriptstyle K}$$
, $d\vec{e}_{\scriptscriptstyle I} = \omega_{\scriptscriptstyle I}^{\scriptscriptstyle K} \vec{e}_{\scriptscriptstyle K}$.

Пусть (n-2)-мерная плоскость M(A) задана линейно независимыми векторами $\vec{m}_i = \vec{e}_i + M_i^\alpha \vec{e}_\alpha$. Тогда известно [1; 2], что структурные формы многообразия m-мерных плоскостей n-мерного аффинного пространства имеют вид

$$\Delta M_i^{\alpha} = \nabla M_i^{\alpha} - M_i^{\beta} M_j^{\alpha} \omega_b^{j} + \omega_i^{\alpha}.$$

Равенство $\Delta M_i^\alpha=0$ представляет собой условие стационарности плоскости M(A) при допустимых преобразованиях репера. Аналогично структурные формы многообразия гиперплоскостей, заданных (n–1) линейно независимыми векторами $\overrightarrow{l_a}=\overrightarrow{e_a}+H_a^n\overrightarrow{e_n}$, запишутся в виде

$$\Delta H_a^n = \nabla H_a^n - H_a^n H_c^n \omega_n^c + \omega_a^n.$$

Согласно [1; 2] п-мерные погруженные многообразия в пространствах представления $\left\{\!\!\!\Delta M_i^\alpha, \omega^J\right\}\!\!, \left\{\!\!\!\!\Delta H_a^n, \omega^J\right\}\!\!,$ задаваемые дифференциальными уравнениями

$$\Delta M_{i}^{\alpha} = M_{iK}^{\alpha} \omega^{K}, \quad \Delta H_{a}^{n} = H_{aK}^{n} \omega^{K}, \tag{2}$$

называются распределениями соответственно (n-2)-мерных плоскостей и гиперплоскостей.

Потребуем, чтобы в некоторой области пространства A_n для любого центра A имело место соотношение $A \in M(A) \subset H(A)$. Распределение (2) с таким отношением инцидентности их соответствующих элементов называется *гиперполосным распределением* H(M) или H-распределением. При этом распределение плоскостей M_{n-2} называется *базисным распределением* (или M-распределением), а распределение гиперплоскостей H_{n-1} – *оснащающим распределением* (или H-распределением).

Произведем следующую канонизацию репера $\{A, \overrightarrow{e_i}\}$: поместим векторы $\{\vec{e}_{\alpha}\}$ в гиперплоскость H(A), а векторы $\{\vec{e}_i\}$ — в плоскость

M(A). Выбранный таким образом репер назовем репером 0-го порядка R^0 . Дифференциальные уравнения H-распределения относительно репера R^0 принимают следующий вид:

$$\omega_i^n = M_{iK}^n \omega^K = H_{iK}^n \omega^K, \ \omega_i^{n-1} = M_{iK}^{n-1} \omega^K, \ \omega_{n-1}^n = H_{n-1,K}^n \omega^K,$$
 (3)

$$\nabla M_{iL}^{n} = M_{iLK}^{n} \omega^{K}, \ \nabla M_{iL}^{n-1} + M_{iL}^{n} \omega_{n}^{n-1} = M_{iLK}^{n-1} \omega^{K},$$

$$\nabla H_{n-1L}^{n} + M_{iL}^{n} \omega_{n-1}^{i} = H_{n-1LK}^{n} \omega^{K}.$$
(4)

Итак, относительно репера R^0 H(M)—распределение задается уравнениями (3; 4), а геометрический объект $\Gamma_1 = \left\{ \!\!\! M_{iK}^n, \!\!\! M_{iK}^{n-1}, H_{n-1,K}^n \right\}$ является его фундаментальным объектом 1-го порядка. Справедлива

Теорема 1. Гиперполосное распределение H(M) относительно репера нулевого порядка аффинного пространства A_n существует с произволом 2n-3 функций п аргументов.

Для регулярного H-распределения согласно лемме H.M. Остиану возможна частичная канонизация репера R^0 , как это следует из дифференциальных уравнений

$$\nabla H_{n-1,j}^{n} + M_{ij}^{n} \omega_{n-1}^{i} = H_{n-1,jL}^{n} \omega^{L}$$
 (5)

Действительно, полагая $H^n_{n-1,j}=0$, мы разрешим уравнения (5) относительно форм ω^i_{n-1} :

$$\omega_{n-1}^i = -M_n^{ij} H_{n-1,jK}^n \omega^K \stackrel{def}{=} H_{n-1,K}^i \omega^K$$

Геометрический смысл такой канонизации заключается в том, что вектор $\{\vec{e}_{n-1}\}$ помещается в характеристику $E_1(A)$ гиперплоскости H(A). Выбранный таким образом репер назовем репером 1-го порядка R^1 . Дифференциальные уравнения H-распределения относительно репера R^1 принимают следующий вид:

$$\omega_i^n = M_{iK}^n \omega^K$$
, $\omega_i^{n-1} = M_{iK}^{n-1} \omega^K$, $\omega_{n-1}^n = H_{n-1,\beta}^n \omega^\beta$, $\omega_{n-1}^i = H_{n-1K}^i \omega^K$, (6)

где функции $M_{iK}^n, M_{iK}^{n-1}, H_{n-1,\beta}^n, H_{n-1,K}^i$ удовлетворяют соответственно уравнениям (4) и уравнениям

$$\begin{split} \nabla H_{n-1,j}^i &= H_{n-1,jK}^i \omega^K \,, \; \nabla H_{n-1,n-1}^i + H_{n-1,n-1}^n \omega_n^i = H_{n-1,n-1K}^i \omega^K \,, \\ \nabla H_{n-1,n}^i - H_{n-1,i}^i \omega_n^j - H_{n-1,n-1}^i \omega_n^{n-1} + H_{n-1,n}^n \omega_n^i = H_{n-1,nK}^i \omega^K \,. \end{split}$$

Геометрические объекты $\Gamma_1 = \left\{ M_{iK}^n, \ M_{iK}^{n-1}, \ H_{n-1,\beta}^n \right\}, \ \Gamma_2 = \left\{ \Gamma_I, \ H_{n-1,K}^i \right\}$ являются фундаментальными объектами соответственно 1-го и 2-го порядка регулярного H-распределения относительно репера R^1 . Имеет место

Теорема 2. Гиперполосное распределение \mathcal{H} (M) относительно репера первого порядка аффинного пространства A_n существует с произволом 3(n-2) функций п аргументов.

2. Для тензора $H^n_{n-1,n-1}$ введем обратный тензор: $\nabla H^{n-1,n-1}_n = H^{n-1,n-1}_{nK} \omega^K$.

Введем в рассмотрение функции

$$\boldsymbol{H}_{n}^{n-1} = -\boldsymbol{H}_{n}^{n-1,n-1}\boldsymbol{H}_{n-1,n}^{n}, \ \boldsymbol{H}_{n}^{i} = -\boldsymbol{H}_{n-1,n-1}^{i}\boldsymbol{H}_{n}^{n-1,n-1}, \ \left\{\boldsymbol{H}_{n}^{a}\right\} \stackrel{def}{=} \left\{\boldsymbol{H}_{n}^{i}, \ \boldsymbol{H}_{n}^{n-1}\right\}.$$

Непосредственной проверкой убеждаемся, что функции H_n^{n-1} , H_n^i , H_n^a образуют квазитензоры 1-го порядка:

$$\nabla H_n^{n-1} + \omega_n^{n-1} = H_{nK}^{n-1} \omega^K, \ \nabla H_n^i + \omega_n^i = H_{nK}^i \omega^K, \ \nabla H_n^a + \omega_n^a = H_{nK}^a \omega^K.$$

Поле квазитензора $\left\{H_n^a\right\}$ задает инвариантное поле аффинной нормали $H_1=\left[A,\;\vec{h}_{_n}\right]$, где поле векторов $\vec{h}_{_n}=H_n^a\vec{e}_a^{}+\vec{e}_n^{}=H_n^i\vec{e}_i^{}+H_n^{n-1}\vec{e}_{n-1}^{}+\vec{e}_n^{}$ внутренним образом определено $\mathsf{H}(M)$ -распределением. Справедлива

Теорема 3. В дифференциальной окрестности 1-го порядка внутренним образом присоединяется к H(M)-распределению поле его нормалей 1-го рода H_1 такое, что при смещении центра A H(M)-распределения вдоль кривых $\omega^a = H_n^a \omega^n$, принадлежащих

этому полю нормалей H_1 , гиперплоскость H(A) переносится параллельно самой себе.

Поля квазитензоров 1-го порядка $\left\{H_n^i\right\}$, $\left\{H_n^{n-1}\right\}$ задают поля нормалей 1-го рода $N_2=\left[E_1,\ H_1\right]$; $N_{n-1}=\left[M_{n-2},\ H_1\right]$ соответственно М-распределения и Е-распределения в смысле Нордена-Чакмазяна.

Заметим, что в каждом центре A выполняется соотношение $H_1(A) = N_2(A) \cap N_{n-1}(A)$. В соответствии Бомпьяни-Пантази

$$\begin{split} & \boldsymbol{v}_{a} = -\boldsymbol{H}_{ab}^{n}\boldsymbol{v}_{n}^{b} - \boldsymbol{H}_{an}^{n} \iff \boldsymbol{v}_{n}^{b} = -\boldsymbol{H}_{n}^{ba}\boldsymbol{H}_{an}^{n} - \boldsymbol{v}_{a}\boldsymbol{H}_{n}^{ba}, \\ & \boldsymbol{v}_{i} = -\boldsymbol{M}_{ij}^{n}\boldsymbol{v}_{n}^{j} - \boldsymbol{M}_{i\beta}^{\beta} \iff \boldsymbol{v}_{n}^{j} = -\boldsymbol{M}_{n}^{jk}\boldsymbol{M}_{kn}^{n} - \boldsymbol{v}_{i}\boldsymbol{M}_{n}^{ij}, \\ & \boldsymbol{v}_{n-1} = -\boldsymbol{H}_{n-1,n-1}^{n}\boldsymbol{v}_{n}^{n-1} - \boldsymbol{H}_{n-1,n}^{n} \iff \boldsymbol{v}_{n}^{n-1} = -\boldsymbol{H}_{n}^{n-1,n-1}\boldsymbol{H}_{n-1,n}^{n} - \boldsymbol{v}_{n-1}\boldsymbol{H}_{n}^{n-1,n-1}, \end{split}$$

нормалям $\{H_n^a\}$, $\{H_n^i\}$, $\{H_n^{n-1}\}$ 1-го рода соответственно H-распределения, M-распределения и Е-распределения в каждом центре А ставятся в соответствие нормали 2-го рода H-распределения, M-распределения и Е-распределения.

Теорема 4. В дифференциальной окрестности 1-го порядка внутренним образом присоединяются соответственно нормализации в смысле Нордена-Чакмазяна $(H_n^i, h_i), (H_n^{n-1}, h_{n-1})$ основных структурных M-, E-подрасслоений данного H(M)-распределения и нормализации в смысле (H_n^a, h_a) для H-распределения.

Список литературы

- 1. *Алиибая Э.Д.* Дифференциальная геометрия гиперповерхности в многомерном аффинном пространстве // Тр. Тбилисского унта. Тбилиси, 1968. Т. 129. С. 319 341.
- 2. Лаптев Γ . Ф. Дифференциальная геометрия погруженных многообразий // Тр. Московского матем. о-ва. 1953. Т. 2. С. 275 382.

S. Jureva

HYPERSTRIP DISTRIBUTION CODIMENSION TWO OF AFFINE SPACE A_n

It is studied differential geometry of hyperstrip distributions of (n-2)-measured lenear elements of affine space A_n .

СЕМИНАР

по дифференциальной геометрии многообразий фигур при Калининградском госуниверситете

В предыдущих выпусках сборника освещена работа семинара по 25 декабря 2001 года. Ниже приводится перечень докладов, обсужденных на семинаре в 2002 году.

11.02.02. В.С. Малаховский. О некоторых свойствах базовых последовательностей пифагоровых треугольников.

18.02.02. *М.Л. Винокур*. Пространство окружностей на плоскости как объединение пучка окружностей и ортогональных ему конгруэнний.

25.02.02. Н.В. Малаховский. Окружности пропорциональных сечений треугольника.

04.03.02. А.В. Скрягина. Основы проективно-дифференциальной геометрии.

11.03.02. Б.А. Андреев. Гиперквадрика Чеха точечного соответствия.

18.03.02. К.В. Полякова. Групповая связность в пространстве элементов Лаптева.

25.03.02. *И.Е. Волкова*. Цилиндрические распределения на гиперполосе SH_{m} .

01.04.02. А.В. Скрягина. Геометрические образы, двойственные плоскостной поверхности.

08.04.02. С.Ю. Волкова. Двойственный образ гиперполосы SH_r(L).

15.04.02. Н.А. Елисеева. Двойственный образ Н (П)-распределения.

22.04.02. Н.Н. Иванищева. Дифференцируемое отображение проективного пространства в многообразие гиперквадрик центропроективного пространства.

29.04.02. К.В. Полякова. Некоторые понятия теории индуцированных связностей на поверхности.

06.05.02. *Т.Ю. Максакова*. Двойственные аффинные связности гиперполосы CH_m^r .