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Pointwise orthogonal splitting of the space of TT-tensors

In the present paper we consider pointwise orthogonal
splitting of the space of well-known 77-tensors on Rieman-
nian manifolds. Tensors of the first subspace belong to the
kernel of the Bourguignon Laplacian, and the tensors of the
second subspace belong to the kernel of the Sampson Lap-
lacian. We give examples and prove Liouville-type non-exis-
tence theorems of these tensors.
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Introduction

Let (M, g) be an n-dimensional (n = 2) Riemannian manifold
with the Levi-Civita connection V. By S?M we understand the
vector bundle of symmetric bilinear differential two-forms. We
define the divergence of symmetric two-tensors fields 5: C*S*M —
— C®T*M by the formula § := — trace, o V (see [1, p. 35]).

We recall that a symmetric divergence free and traceless
covariant two-tensor (transverse-trace free tensor) field is called
TT-tensor (see, for instance, [2]). The vector space of TT-tensors
@7 is defined by the condition

STT(M):= {p € S?M | § ¢ = 0, traceyp = 0}.
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Any TT-tensor is denoted by @7 (see [2]). As a consequence
of a result of Bourguignon — Ebin — Marsden (see [1, p. 132; 2])
the space of TT-tensors is an infinite-dimensional vector space on
any closed Riemannian manifold (M, g). Such tensors are of fun-
damental importance in stability analysis in General Relativity
(see, for instance, [3]) and in Riemannian geometry (see, for ins-
tance, [1, p. 346—347; 2]). A simple example of TT-tensors is the
Ricci tensor of a Riemannian manifold of zero scalar curvature.

The tangent space T,)M at any x € M is an n-dimensional Euc-
lidian vector space E with the orthogonal group 0(n, R). We con-
sider the space

S(E) ={G €E~ ®53E | G12(c) = 0},

where SZE is the space of trace-free symmetric two-tensors on E
and Gp,(c) = Yr-1G(ex, ex,c) for an orthonormal basis
{eq, ..., ey} and an arbitrary ¢ in E. By [4], the tensor space G(E)
has the orthogonal splitting G(E) = S,(E) @ S,(E) for two
subspaces irreducible with respect to the action the orthogonal
group 0(n, R):

G.(E) ={® € G(E)| ®(a,b,c) = ®(b,a,c)},
S,(E) ={® € G(E)| ®(a,b,c) + ®(b,c,a) + ®(c,a,b) = 0}

for arbitrary a, b, ¢ in E. Then the tensor field V™7 on (M, g) is a
section of the vector bundle S(TM), the fiber of which at each
point x € M is the space S(E). As a consequence, we obtain a
pointwise decomposition of Vg7 into a sum of the tensor fields
corresponding to the pointwise irreducible components of the ac-
tion of the group O(n, R). This decomposition of VoT determines
a rough classification of TT-tensors, where the first class &; con-
sists of TT-tensors for which their covariant derivatives are sec-
tions of G;(TM) and the second class &, consists of TT-tensors
for which their covariant derivatives are sections of S, (TM).
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1. The first class of transverse-trace free tensors

Suppose @7 € G, then it satisfies the differential equation

(Vxp ™Y, 2) = (Vyo™) (X, 2)
for any X,Y,Z € TM. In this case, the condition trace;o™" =0
takes the form § @7 = 0. It follows that the tensor field @7 is a
Codazzi tensor with zero trace and zero divergence.

A simple example of @T7 € &; is the second fundamental
form of the minimal hypersurface of a Riemannian manifold of
constant curvature (see [1, p. 436]). On the other hand, the geomet-
ry of manifolds bearing Codazzi tensor fields is described in detail
in the literature (see, for example, the survey in [1, p. 590—598]).
In turn, we can formulate the following local result.

Theorem 1. Let (M, g) be a Riemannian manifold of constant
curvature C. Then a TT-tensor @7 € &, has the form

@' =Hess(f) +C - fg

where f € C2M is a solution of the equation Af +n C f =0 for
the Beltrami Laplacian on functions A: = tracegVZ.

Proof. A Codazzi tensor ¢ on (M, g) with constant curvature C
has the form (see [1, p. 436])

¢ =Hess(f) +C - fg

for the C2-function f on (M, g). If ¢ = @7, then it is a solution
of the equations Af+nCf =0 and Adf = Cdf, because
tracegp = 0 and § ¢ = 0, respectively. Recall that A:=80 Vis
the rough Laplacian (see [1, p. 52]). In addition, it is easy to prove
that the second equation above is a consequence of the first
equation.

J.P. Bourguignon (see [1, p. 355; 5, p.273]) constructed the
Laplacian Ag: C®S?M — C®S?M by the formula

Ap=d & +8d
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where

for arbitrary X,Y,Z € TM (see [1, p. 355]). Inturn, ¢ € C*S?M is
called harmonic if it belongs to the kernel of Ag. Therefore, a
Codazzi tensor with constant trace and, in particular, with zero
trace is harmonic (see [6, p. 350]). In turn, if (M, g) is a closed
manifold and a harmonic symmetric bilinear form ¢ is given in a
global way on (M, g) then ¢ € kerAg (see [7]). Furthermore, an
arbitrary ¢ € ker Ag on a closed Riemannian manifold (M, g) with
nonnegative sectional curvature K (o) is parallel and if K(¢) > 0 at
some point, then ¢ is a constant multiple of g (see also [7]). Using
the above, we can formulate our theorem.

Theorem 2. An arbitrary TT-tensor @T7 € &, on a closed
Riemannian manifold (M, g) with nonnegative sectional curvature
K (o) is parallel. Moreover, if K(o) >0 at some point, then @TT is
a zero-tensor.

It is well known that a Riemannian symmetric space of com-
pact type is a compact (without boundary) Riemannian manifold
with nonnegative sectional curvature (see [6, p. 387]). One can sta-
te the following assertion.

Corollary 1. An arbitrary TT-tensor ¢’ € S, on a Rieman-
nian symmetric space of compact type (M, g) is parallel. Moreo-
ver, if the holonomy group Hol(g) of the space (M, g) is irredu-
cible, then ™" = 0.

On the other hand, we proved the following proposition (see
[7; 8]): if the sectional curvatures of a connected complete non-
compact Riemannian manifold (M, g) are everywhere nonnegative,
then there exists no nonzero Codazzi tensor ¢ € C °°Sg M,p=2,
such that fMllgollqdvolg < oo for at least one q € (0,+). The-

refore, we have the following theorem.

Theorem 3. Let (M, g) be a connected complete noncompact
Riemannian manifold with nonnegative sectional curvature. Then
there is no a nonzero TT-tensor @TT €S, such that
fM||<pTT||qdvolg < 4o for at least one q € (0, +).
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2. The second class of transverse-trace free tensors

Now suppose that ¢TT € &,, then it satisfies the differential
equation

Vxe™(¥,2) + (Vyo™(Z,X) + (Vo™X Y)=0 (1)

for any X,Y,Z € TM. In this case, the condition tracego™ =0

takes the form § @7 = 0. From (1) it follows that the tensor field
™" is a symmetric Killing two-tensor with zero trace and zero di-
vergence. The geometry of manifolds bearing symmetric Killing
tensor fields is described in detail in the literature (see, for
example, [9; 10]). For a Riemannian manifold of constant curvatu-
re, we can formulate the following local result.

Theorem 4. Let (M, g) be a Riemannian manifold of constant
curvature, then a TT-tensor @7 € &, has the form

(pz}T = eZ“’(Al-jkl kal + Bijkxk + Cl]) (2)

for w = (n+1)"YIn(detg) with respect to a local coordinate
system {x*, ...,x"} of (M, g). The coefficients Ayjx; . Biji and C;;
of (2) are constant symmetric with respect to the first two
subscripts and satisfying the identities

Ajjri + Ajrir + Ariji = 0; 3)
Bijk + Bjki + Byij = 0; 4)
97 Aijia = 9YBijx = g’Cy; =0 (5)

fori,jkl=1,..,n

Proof. According to [11] and [12], if (M, g) is a Riemannian
manifold of constant curvature, then the general solution of the
equation (Vx@)(X,X) =0 for any X € TM has the form (2) for
w = (n+1)"'In(det g) and the constants A;jx;, Byjx, C;; which
are symmetric with respect to the first two subscripts and satisfying
(3) and (4). In this case, the condition traceyp = 0 takes the form
(5). Therefore, the equalities (2)—(5) describe the solution of (1).
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We proved that every divergence-free Killing tensor ¢ € C*S?M
on a closed Riemannian manifold (M, g) with nonpositive sectio-
nal curvature K (o) is parallel and if K(o) < 0 at some point, then
@ is a constant multiple of g (see [13]). This implies the following
result.

Theorem 5. An arbitrary TT-tensor ¢T7 € S, on a closed
Riemannian manifold (M, g) with nonpositive sectional curvature
K (o) is parallel. Moreover, if K(a) <0 at some point, then ¢TT is
a zero-tensor.

If ¢ € C®S?M is a traceless symmetric Killing tensor on
(M,g) and Agi= 86" —6*8 is the Sampson Laplacian, then ¢
belongs to kerAg (see [1, p. 356; 24]). We recall here that the
symmetric derivative §*:C®°S?M — C®°S3M is defined by the
equation

for arbitrary X,Y,Z € TM (see [1, p. 35, 356]). At the same time,
in [14] was proved that there is no a nonzero symmetric two-tensor
field ¢ € kerAg on a simply connected complete Riemannian
manifold (M, g) such that fMllcpllqdvolg < + o for at least one
q € (0,+ ). Note that such Riemannian manifold is diffeomor-
phic to R™ and has an infinite volume.Using the above, we can for-
mulate the following theorem.

Theorem 6. There is no a nonzero TT-tensor T! € S, on a
simply connected complete Riemannian manifold (M,g) of
nonpositive sectional curvature such that fM”(PTTllqdvolg < 4+
for at least one q € (0, +).

An example of such a manifold is a Riemannian symmetric
manifold (M, g) of non-compact type, since it is simply connected
and has nonpositive curvature.

Corollary 2. There is no a nonzero TT-tensor ¢! € S, on a
Riemannian symmetric manifold of non-compact type (M, g) such
that fMll(pTTllqdvolg < 4o for at least one q € (0, + o).

50



S.E. Stepanov, I.1. Tsyganok

References

1. Besse, A. L.: Einstein manifolds. Springer (2008).

2. Bourguignon, J. P., Ebin, D.G., Marsden, J.E.: Sur le noyau des
opérateurs pseudo-differentiels 4 symbole surjectif et non injectif. Comptes
rendus hebdomadaires des séances de I'Académie des sciences. Sér. A et B,
Sciences mathématiques et Sciences physiques, 282, 867—870 (1976).

3. Garattini, R.: Self sustained tranversable wormholes? Class. Quant.
Grav., 22:6, 2673—2682 (2005).

4. Stepanov, S.E.: On a group approach to studying the Einstein and
Maxwell equations, Theoretical and Mathematical Physics, 11:1, 419—427
(1997).

5. Bourguignon, J.-P.: Les variétés de dimension 4 & signature non
nulledont la courbure est harmonique sont d’Einstein. Invent. Math., 63,
263—286 (1981).

6. Petersen, P.: Riemannian Geometry. Springer (2016).

7. Rovenski, V., Stepanov, S., Tsyganok, I.: The Bourguignon Laplacian
and harmonic symmetric bilinear forms. Mathematics, 8:1, 83 (2020).

8. Stepanov, S.E., Tsyganok, 1.1.: Codazzi and Killing tensors on a
complete Riemannian manifold. Math. Notes, 109:6, 932—939 (2021).

9. Eisenhart, L. P.: Riemannian geometry. Princeton Univ. Press (1949).

10. Heil, K., Jentsh, T.: A special class of symmetric Killing 2-ten-
sors. J. Geom. and Physics, 138, 103—123 (2019).

11. Stepanov, S.E., Smolnikova, M.V.: Affine differential geometry
of Killing tensors, Russian Math., 48:11, 74—78 (2004).

12. Stepanov, S. E., Tsyganok, 1., Khripunova, M.: The Killing tensor
on an n-dimensional manifold with SL(n, R)-structure. Acta Univ. Pa-
lacki. Olomuc., Fac. rer. nat., Mathematica, 55:1, 121—131 (2016).

13. Stepanov, S.E.: On an application of a theorem of P. A. Shirokov
in the Bochner technique. Russian Math., 9, 50—55 (1996).

14. Stepanov, S., Tsyganok, 1., Mikes, J.: On the Sampson Laplacian,
Filomat, 33:4, 1059—1070 (2019).

For citation: Stepanov, S.E., Tsyganok, I.I. Pointwise orthogonal
splitting of the space of T7-tensors. DGMF, 54 (2), 45—53 (2023).
https://doi.org/10.5922/0321-4796-2023-54-2-4.

m.. SUBMITTED FOR POSSIBLE OPEN ACCESS PUBLICATION UNDER THE TERMS AND CONDITIONS OF THE CREATIVE
NS COMMONS ATTRIBUTION (CC BY) LICENSE (HTTP://CREATIVECOMMONS.ORG/LICENSES/BY/4.0/)

51



[ncbepeHumanbHas reomeTpus MHoroobpasni duryp

YK 514.764.212

C.E. CmenaHos'™, . W. L|bleaHok
®@uHaHcosb Il yHusepcumem npu pagumenscmee P®, Poccus
s.e.stepanov@mail.ru
doi: 10.5922/0321-4796-2023-54-2-4

lMoTou4eYHOE OPTOrOHamNbLHOE pacLlenseHne
npocTpaHcTBa T T-TeH30poB

IToctynuna B pegaxiuio 03.03.2023 r.

B cratbe paccmarpuBaeTcsi OpTOrOHAIBHOE PACIIENICHUE IPOCTPaH-
CTBa M3BECTHBIX I7-TEH30pPOB HAa PUMaHOBBIX MHOT000pa3usx. TeH3opsl
TIEpBOTO ITOIPOCTPAHCTBA NPHHAIEKAT APy Jlarmiacuana bypruaboHa,
a TEH30pBl BTOPOrO MOANPOCTPAHCTBA NMPHHAUIEKAT APy JNalaacuaHa
Comricona. IlpuBogsTcst mpuMeps! M JOKA3bIBAIOTCA TeopeMbl JInmyBuisa
0 HECYIIIECTBOBAHMH 3THUX TEH30POB.

Kouesvie cnosa: puManoBo MHOTOOOpasue, 17-TeH30p, TEOPEMBI He-
CYyIIECTBOBAHMS JIMYBUIIJICBCKOT'O THIIA, CEKIIMOHHAS KPUBH3HA
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