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PORTFOLIO OPTIMIZATION IN THE CASE
OF AN EXPONENTIAL UTILITY FUNCTION
AND IN THE PRESENCE OF AN ILLIQUID ASSET

We study an optimization problem for a portfolio with a risk-free, a li-
quid, and an illiquid risky asset. The illiquid risky asset is sold in an
exogenous random moment with a prescribed liquidation time distribution.
We assume that the investor chooses an exponential utility function. Study of
optimization problems with three assets including an illiquid asset leads to
three-dimensional nonlinear Hamilton — Jacobi — Bellman (HJB) equations.

It is well known that the exponential utility function is connected with
the HARA utility function through a limiting procedure if the parameter of
the HARA utility function is going to infinity. We show that the optimization
problem with the exponential utility function is not connected to the
optimization problem with the HARA utility by the limiting procedure and
we obtain essentially different results. We provide the Lie group analysis of
the corresponding HJB equation.

For the main three-dimensional PDE with the exponential utility
function, we obtain the complete set of the nonequivalent Lie group invariant
reductions to two-dimensional PDEs according to an optimal system of
subalgebras of the admitted Lie algebra. We prove that in just one case the
invariant reduction is consistent with the boundary condition. This reduction
represents a significant simplification of the original problem.

Wsyuena npobaema onmumusayuu ubecmuyuontoeo nopmeeas, 6xaio-
uaoujeeo be3puckoBuiil akmub, Bvicoxkorubkbuonbill U HeAukBUOHbBLIL aKmuBeL.
Ilpu smom HeauxBudHwill akmub moxem Ovims npodan 6 HesaBucumolil
CAYUAtiHbIL MOMeHT BpeMenu, U 045 Heeo pacnpedeerue Bpemeny Auxbuoa-
yuu usbecmuo. Mol npednosaeaem, umo unBecmop npeonowumaen 3KCHOHeH-
YUALLHYIO (hyHKYu0 nosesHocmu. V3yuerue npobiem onmumMusayui ¢ mpe-
MA akmubamu, Bkaouas HeaukBuOHwI axmuB, npubooum K mpexmepHbsiM
HeaunetnuiM Yypabrenusm Famusvmona — xobu — Beasmana (H]B).

Xopowio usbecmo, umo IKCNOHEHYUANBHASL (PYHKYUA NOAeSHOCU CBSI-
sana ¢ eunepboauteckoi GyHxyuen nosesHocmu (2unepboiuteckoe Henpus-
mue abcoarommuoeo pucka — HARA) nocpedcmbom npedeavtozo nepexoda,
npu Komopom napamemp eunepbosuveckol (pyHKyuU nosesHocmu cmipe-
mumcs x beckoneurocmu. Mol noxasviBaem, umo npodiema ONMUMUIAYUL
UHBeCUYU0HH020 Nopmgess ¢ IKCNOHEHYUAALHOT (DYHKYUel 10Ae3HOCHIU
He cBa3aHa npede/bHbiM 1epexo0oM ¢ npodAeMOll ONMUMUSAYUL ¢ 2unepbo-
AUNeCKOUl PYHKYUeTl N0Ae3HOCU, U 044 Hee NOAYHeHbl CYuecBerHo Opyeue
pesyAbmantol.

Mui npoBodum  meopemuxo-epynnoboii  anasus coomBemcm8yiouyeeo
ypabuenus Tamusvmona — fkobu — beasmana 6 cayuae ucnoavsoBanus
IKCNOHEHYUAAbHOT PYHKYUU nosesHocmU. [l eaabroeo mpexmepHoeo ypab-
HeHUs 6 uacmHbix npo36oOHbIX Mbl NOAYUAEM NOAHbLIL HADOP HeakBubareHm-
Howx JIu epynnobix unbapuanmmusix pedykyutl k 08ymepHbiM ypadrenusm 6
UACMHBIX NPOUSBOOHBIX CO2AACHO ONMUMAALHOLL CUCIeMe 100as2edp MaKcu-
manvhoti Jlu aneebpui, donycxkaemoii amum ypabrenuem. Mot doxasvibaem,
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4mo moavko 6 00HOM cAyude uHBApUAHMHAA peOyKyUs coBMecuma ¢ 1no-
CmabAeHHbIM epaHudHbIM Ycaobuem. Dma pedykyus npedcmabasem coboil
cyuyecmBenrioe ynpoujerue UCX00HOT 3a0auu.

Keywords: portfolio optimization, illiquidity, Lie group analysis, invariant re-
ductions

KnroueBsie cy10Ba: onTvMmsanys MopTderns IIeHHBIX OyMmar, HeIMKBUIHOCTB,
JIu rpyTImioBovI aHaIV3, MHBapVAHTHEIE PeTyKIN

1. Introduction

We study an optimization problem for a portfolio with an illiquid, a
liquid risky, and a risk-free asset in the framework of continuous time. We
suppose that the illiquid asset is sold in an exogenous random moment T
with a prescribed liquidation time distribution.

Optimization problems, where the time-horizon is an exogenous random
variable, may arise in different situations. The international financial crisis
2008 —2009 initiated a change in the financial policy towards new, stronger
regulations in many countries and also to some special insolvency regula-
tions in EU countries. The actual corona crisis differs from the previous crisis
2008 —2009 because of its strong global impact on economics. As a con-
sequence, optimization problems with an exogenous random time of liqui-
dation become right now very topical for most countries in Europe. Many
small and medium-sized companies are forced now to liquidate their fac-
tories or houses because they cannot pay obligations in time. During this
crisis, many investors changed also their risk tolerance towards a strong
conservative one and the exponential utility function became more relevant
than the HARA utility function. One can find many references on this topic
in the short review [9] (which became especially actual right now), which is
devoted to assessing risk tolerance in dependence of economic cycles as well
as to a discussion of different parameter choices and forms of utility
functions. This supports our assumption that during an economic crisis
some investors will prefer to use instead of a HARA utility function a CARA
utility function, for instance, an exponential utility function.

There are a large number of papers that generalize the famous Merton's
model [16], for instance, some of them introducing a stochastic income in the
Merton's classical portfolio as in [8], and others are devoted to the classical
optimal investment problem with a random endowment such as works [7;
10]. The main new feature in our problem is that the portfolio includes an
illiquid asset with a prescribed liquidation time distribution. For the first
time, the optimization problem in this form with the HARA utility function
was introduced in the paper [4] and later studied in papers [2; 3; 5]. If the
illiquid asset in the portfolio is a real estate, a factory, a plant, or store then
you can sell it as a whole only. It is a typical situation with the selling of
houses, small factories, or shops that you know the market situation and a
typical liquidation time distribution. For instance, in a seller market, the
liquidation time distribution will be rather an exponential distribution. If it
is the buyer market then it will be closer to a Weibull distribution. We study
in this paper both liquidation time distributions as special cases.
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The influence of the risk tolerance preferred by the investor on the
solution of an optimization problem was studied before for different
portfolio settings with and without an illiquid asset. We review here some
results which are relevant for the selection of the utility function.

In the paper [18], the authors started with the classical Merton's
optimization problem used in [15; 16]. The portfolio contains one liquid
risky asset and a risk-free money market account. The trading takes place
within a fixed finite time horizon. The authors explore the question of risk
management under different risk preferences of the investor. They study the
optimal wealth process and the portfolio process across different utilities
and provide transformations between two such processes corresponding to
two arbitrary utilities. It is possible to find a deterministic transformation
using the local absolute risk tolerance function associated with the
corresponding utility function. This transformation is defined by a solution
of a linear heat equation with the risk tolerance function as a coefficient by
the second spatial derivative. Because of the classical problem features, it is
possible to study the influence of the chosen utility and the risk tolerance on
the wealth process and the different characteristics of the optimal portfolio
in detail. The authors prove that the curvature of the risk tolerance function
of the preferred utility function plays the main role. Certainly, we cannot
expect such tractability from an optimization problem with an illiquid asset,
but we can use this model as a benchmark for the case if the volume of the
illiquid position of the studied portfolio vanishes.

The dependence of optimal liquidation strategies from the risk aversion
of investors was studied in [23]. The authors consider the infinite time
horizon in the optimal portfolio liquidation problem and use a stochastic
control approach. In this model, a large investor trades one risky and one
risk-free asset. Thereby due to insufficient liquidity of the risky asset the
investor's trading rate moves the market price for the risky asset. The
authors obtain nonlinear parabolic partial differential equations (PDEs) for
the value function and the optimal strategy. They have to determine the
adaptive trading strategy that maximizes the expected utility of the proceeds
of a large asset sale. Withal authors studied the financial influence of
different types of investor's utility functions. They found that the optimal
strategy is aggressive or passive in-the-money in dependence of the
investor's risk tolerance, i.e. if the utility function displays increasing or
decreasing risk aversion. The authors proved that such strategies are rational
for investors with different absolute risk aversion profiles.

Another approach to a liquidation problem of an illiquid asset is
provided in paper [17]. It is devoted to the problem of how efficiently
liquidate large assets positions up to an exogenous fixed terminal time. The
author supposes that the investor prefers the exponential utility function
and seeks to maximize the expected utility of the terminal value of his
wealth. The portfolio contains an illiquid asset called a primary risky asset, a
liquid asset that is imperfectly correlated with the primary asset and is
called a proxy risky asset as well as a riskless money market account that
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pays zero interest rate. In practice, the investor tries to reduce the price
impact by trading a large number of assets and to hedge market risk of the
liquidated portfolio. As a common strategy one chooses splitting of the
given order into smaller pieces and to trade these pieces sequentially over
time. The author can find optimal strategies explicitly and study their
properties. The strategies depend on time and parameters of the model only
and are solutions of a linear ordinary differential equation (ODE) of the
second order. The author proves that this case is a generalization of the
original Merton's model studied in [15; 16]. He also noticed that the explicit
and simple results for optimal strategies were possible to obtain just by
using finite terminal time and because of the investor used the exponential
utility function. A more realistic setting, for instance, where the investor
receives multiply orders at random times or the liquidation time is not fixed
in the beginning leads to an essential more complicated model. In
comparison to our case, the illiquid asset in [17] does not pay any dividends
and the investor can also split the illiquid asset and sell them piece by piece
as well as the investor has no consumption during the lifetime of the
portfolio.

Study of optimization problems with three assets including an illiquid
asset leads to three-dimensional nonlinear Hamilton — Jacobi — Bellman
(HJB) equations. The corresponding nonlinear three-dimensional PDEs
include a lot of parameters describing the behavior of assets and are challen-
ging for analytical and numerical methods. To simplify the investigated
problem one tries to find an inner symmetry of such an equation and reduce
the number of independent variables at least to two or if possible to one.
Usually, lower-dimensional problems are better studied and are, therefore,
easier to handle. We use in this paper the powerful method of Lie group
analysis. This method is very well known for more than 100 years. It is very
often used in the area of mathematical physics or to study nonlinear
diffusion in porous media where similar nonlinear heat equations arise (see
[24—26]). Over the past 20 years this method also used in financial
mathematics [1]. Nearly all known explicit solutions to ODEs or PDEs were
found or can be found algorithmically (i.e. without guessing) by this
method. This method is up to now the most appropriate method to find
algorithmically substitutions to reduce a higher-dimensional PDE to a
lower-dimensional one or even to an ODE.

The Lie algebraic structure of the corresponding HJB equation is one of
the two main results of this paper. The Lie algebraic structure of the HJB
equation reveals important structural properties of the considered equation.
For instance, for the linear Black-Scholes equation, the corresponding Lie
algebraic structure gives rise to famous substitutions which reduce it to the
heat equation or it allowed to obtain the fundamental solution and the
explicit formulas for European Call or Put. For a nonlinear equation like that
studied here, we cannot get any fundamental solution but we can obtain
reductions of the high-dimensional HJB equation to simpler ones. We study
the complete set of all possible reductions and describe the unique reduction
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to a two-dimensional PDE which satisfies the boundary conditions. We
present also the explicit form of the corresponding investment-consumption
strategies in invariant variables. This reduction also means that for all
further investigation it is sufficient to use the two-dimensional PDE instead
of the three-dimensional main HJB equation.

Our paper is organized as follows. In Section 2 we introduce the
economic problem features in detail. We provide there a theorem stating
that the HJB equation with a HARA utility function possesses a unique
viscosity solution which was earlier proved in [4]. This Theorem will be now
modified for the case of an exponential utility function. In Section 3 we
provide the Lie group analyses of the optimization problems with a general
liquidation time distribution and different utility functions. We prove that
the cases of a HARA utility and an exponential utility are completely
different. The usual limiting procedure between the HARA and exponential
utility functions gives us wrong results for the corresponding Lie algebraic
structures. In Section 4, for the optimization problem with the exponential
utility function, we chose an optimal system of subalgebras of the admitted
Lie algebra and provide the complete set of all invariant reductions of the
corresponding three-dimensional PDE. Because this is an essential step, the
complete prove with all details is given and the meaning of each reduction is
explained. In each case, we prove if the invariant substitutions are
compatible with the boundary condition. In Section 5 we discuss the
connection between different results and see that the radical change of the
investment-consumption strategies is connected with the chosen exponential
utility function.

2. Economical setting

We study an optimization problem for a portfolio in the framework of
continuous time. An investor has a portfolio with three assets: an illiquid, a
liquid risky, and a risk-free asset. The investor has an illiquid asset that has
some paper value and can not be sold until some moment T that is random
with a prescribed liquidation time distribution. The investor tries to
maximize her average consumption investing into a liquid risky asset that is
partly correlated with the illiquid one. The investor is free to choose a utility
function in correspondence with her risk tolerance. In our previous papers
[3—5] we assumed that the investor chooses a hyperbolic absolute risk
aversion (HARA) utility function or a logarithmic (LOG) utility function as a
special case of the HARA utility. Now we suppose that the investor has a
quite different risk tolerance as before and chooses an exponential utility
function. We notice that a risk tolerance R(c) of an investor is defined as

R(c)=- llll”((C)) for any utility function U(c), c €[0,). For the HARA utility
c

function, the risk tolerance R(c) is a linear function of ¢ and for the

exponential utility function, it is a constant.
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Because the form of utility functions define the form of HJB equations
and the limiting procedures connecting the HARA utility with the loga-
rithmical and exponential utility functions play an important role in this
paper we describe these relations in more detail. In the previous papers
[2—5] we used the HARA and LOG utility functions and studied the
connection between both optimization problems. We used the HARA utility
function in the form

UFARA(C)zl_Ty[(ﬁjy_l], 0<y<l. 1)

It is easy to see that as y — 0 then the HARA utility function written as
(1) tends to the LOG utility

U™ (c),_, = U"%(c) =Inc. )

7—0

In common literature is often noticed that we obtain an exponential
utility function as a limit case of a HARA utility function by y — . This
assertion is correct just if the HARA utility function takes a special form, for
instance, for the HARA utility in the form (1) it is not the case. It is easy to
prove that if we take the HARA utility in the form

Vs
u;*ARA(c)=1_—7( ac +1j , 0<y<1,a>0, 3)
r \1-7¢
then we obtain by the limiting procedure an exponential utility function
(), > U () = -6 @

It is a so-called exponential utility function (denoted as EXP). The most
common form of the exponential utility function is

u(cy= %(1 —e),a>0. (5)

We call it a positive exponential utility function (and denote it as EXPp).
Both (4) and (5) utility functions differ just by an additive and a

multiplicative constant 1 We will prove later that both optimization
a

problems, with EXP and EXPp utility functions are equivalent.

The forms U;*** and U;"*** of the HARA utility function are often used
and from an economical point of view, both of them have properties of a
HARA type utility function. From the analytical point of view, the HARA

utility functions U/** and U}*** are different.

In the case of U;"*

, we obtain by limiting transition y -0 a LOG
utility function (2). As we mentioned before the risk tolerance, in this case, is

equal to

= Q)
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and by y >0 we obtain R,,;(c)=c as it to expect. But we get neither a

HARA
ul

finite limit by y — o« of the function (c) nor a relevant value for the

risk aversion R, (c) in this case.
In the second case for the utility function U}*** (3), we obtain for the
risk tolerance the expression

Ry(c)="=F=_° 42 7)

Here U;**" tends by the limiting transition y — o to the EXP utility
function (4) and the risk tolerance takes a constant value R,(c)=a' as it is
to expect in the case of an exponential utility function. But here in
contradiction to the first case of U;**", we cannot obtain any meaningful
expression by the limiting procedure y —0, it means we do not obtain a
transition to the LOG utility function.

In other words to study the connection between two optimization
problems with a HARA utility function and with a logarithmic utility
function we should use the HARA utility for instance in the form U;***(c)
to be able to provide the limiting procedure y —0 in all formulas. For the
study the connection between two optimization problems with a HARA
utility and with an exponential utility we should use another form of the
HARA utility, for instance, of type U,“**(c) to be able to make the limiting
transition for y — o in corresponding formulas.

Because of the relation (4) to correct comparison of the results for the
optimization problem with the HARA utility function Uj;"**(c) with the

results for an optimization problem with an exponential utility function we
need to study first the optimization problem with the exponential utility
function U""(c). The optimization problems with exponential utility
functions (4), (5) describe economically equivalent situations. There exist
one-to-one analytical substitution which provides the equivalence relation
between two of these optimization problems which we show explicitly later
in Section 3.2.

From (6) and (7) follows that the functions R,(c),R,(c), R, (c) are linear
functions of c. It means also that the absolute risk tolerance is increasing or
decreasing with the consumption c in these cases. For an exponential utility
function the risk tolerance is a constant. In other words, all the time the
absolute risk tolerance stays unaltered in the framework of these
optimization problems.

We see that even though both the LOG and EXP utility functions can be
regarded as a limit case of the HARA utility function they describe quite
different economical situations: in the first case, the risk tolerance changes
with the consumption ¢ and in the case of the EXP utility function the risk
tolerance do not depend on the level of the consumption at all.

It means that now the investor has a constant risk tolerance. Maybe it
explains that both optimization problems studied before and presented now
have quite different analytic and Lie algebraic structures as we show it later.
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2.1. Formulation of the optimization problem

We introduce a filtered probability space (Q, F,F,P), where F = (F,),,, is
the natural filtration, generated by two independent standard Brownian
motions W' and W?, and verifying usual properties: it is completed and
right continuous (see [12]).

The liquidation time T of the portfolio is a non-negative random
variable on the same probability space (Q,F,P), and this allows us to

introduce an additional source of uncertainty that is not connected to the
randomness of the financial market. We suppose that the cumulative
distribution function @ of the random variable T is known and related to

thelaw P of T inthe usual way: VteR, ®(t) =P, (]-,t]).
The probability density function of the liquidation time distribution is

denoted by ¢(t), whereas a(t) denotes the survival function, also known as

a reliability function, a(t) =1-®(t). We skip here the explicit notion of the

possible parameters of the distribution to make the formulas shorter.
In dependence on the rate of illiquidity, the liquidation time distribution
can take different forms. Typically one uses the simplest one parameter

exponential distribution with the reliability function ®(t)=e™, where « is
the parameter of the distribution or a more advanced Weibull distribution

with 5(:%) =" with two parameters, 4 and k. We will take these two
distributions as examples in our investigation. We notice that the
exponential distribution is a special case of the Weibull distribution by k=1
and x=1/4.

Assumptions and constrains.

We suppose that a utility function U(-) satisfies the following
conditions:

Lim®(H)E[U(c,)]=0, D(t) ~e™, k>0 or faster as t — oo. 8)

t—o0

For a variable ¢ €[0,) the function U(c) is strictly increasing, concave
and twice differentiable in ¢, further on

U(c)<M(1+c), 0<y<1, M>0, )
and either limU'(c) =+, limU'(c) =0, (10)
c—>0 c—>+0

or U'(c) _ =const.>0, 1imU'(c)

- c—>+o0

0. (11)

The investor's portfolio includes a risk-free bond B, , a risky asset S, and
a non-traded asset H, that generates stochastic income, i.e. dividends or
costs of maintaining the asset. The risk-free bank account B,, with the
interest rate r, follows
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dB, =rB,dt, t<T, (12)

where r is constant. The lower case index ¢ denotes the spot value of the
asset at the moment ¢.
The stock price S, follows the geometrical Brownian motion

ds, =S, (adt +cdW' )t <T, (13)

with the continuously compounded rate of return «>r and the standard
deviation o . The illiquid asset H,, that can not be traded up to the time T

and its paper value is correlated with the stock price and is governed by

B = (u-ayitsn{ paw; + 1= g% W) <, (14)

t
where u is the expected rate of return of the risky illiquid asset, (W,',W;”)

are two independent standard Brownian motions, ¢ is the rate of dividend
paid by the illiquid asset, 7 is the standard deviation of the rate of return,

and pe(-1,1) is the correlation coefficient between the stock index and the
illiquid risky asset. The parameters u, &, 7, p are all assumed to be

constant.
The randomly distributed time T is an exogenous time and it does not
depend on the Brownian motions (W,', W) as we mentioned before.

Given the filtration [, we assume that the consumption process (c,),, is
an element of the space £, of non-negative IF-progressively measurable

processes such that E(J‘Otcsds) <o, te[0,T].

All the income is derived from the capital gains and the investor must be
solvent. In other words, the liquid wealth process (L,),.., must cover the

consumption stream. The wealth process (L,),..; is the sum of cash
holdings in bonds, stocks and random dividends from the non-traded asset
minus the consumption stream, i. e. it must satisfy the balance equation

dL, = (rL,+0H, + (¢ —1)—c)ds+m,ocdW}, t<s<T. (15)

The set of admissible policies (7,,c,),, is standard and consists of
allocation-consumption strategies such that: (c,),,, belongs to L, ; (7,),., is

F -progressively measurable and J‘:(ﬁ,)2 dr<ewo a.s. for any t<s<T;

(L;);cser » defined by the stochastic differential equation (15) and initial
conditions L,=[>0,H,=h>0 a.e. The consumption stream (c,),, is

admissible if and only if it is positive and if there exists a strategy that
finances it. We assume that the investor consumes at rate (c,),., from the

liquid wealth and the allocation-consumption plan (z,,c,),., consists of the
allocation of the portfolio with the cash amount (7,),,, invested in stocks,
the consumption stream (c,),,, and the rest of the capital kept in bonds.

81



82

ﬁ Teopemuuecka i IKCnepuMeHmalvian usuxa
)
S

Remark 1. Further on we sometimes omit the dependence on ¢ in some of
the equations for the sake of clarity of the formulas.

The investor wants to maximize the overall utility consumed up to the
random time of liquidation T, given by

ue,) = EU:@(t)U(ct)dt] (16)

as it was shown in [4]. It means we work with the problem (16) that
corresponds to the value function V(l,h,t), which is defined as

V({l,h,t)= maxEUtwa(s)U(CS)ds |L,=LH,=h, Lh> 0}, (17)
(”trft)

where | could be regarded as initial capital and h as a paper value of the

illiquid asset. The value function V(l,h,t) satisfies the HJB equation

V,(l,h,t)+%772h2vhh(l,h,t)+(rl+5h)V,(l,h,t)+

(,u—5)th(l,l’l,f)+m7.;:1xG[7Z']+maXH[C] =0, (18)

c20
Glz]= %sz (Lh,t)z*c® +V, (L, h,tnproh+z(a—r)V,(L,h,t), (19)

Hic]=—cV,(Lh,t)+ D(H)U(c), (20)
with the boundary condition
V(I,h,t) >0, as t > . (21)

In [4; 5] the authors have already demonstrated that the formulated
problem has a unique solution under certain conditions. Namely, the
following theorem was proved

Theorem 1 [4]. There exists a unique viscosity solution of the corresponding
HJB equation (17) — (21) if the conditions (8), (9), and (10) are fulfilled.

In this paper, we restrict ourselves to the case of an exponential utility
function that satisfies three first conditions (8), (9) of Theorem 1 by
definition. We checked the proof of the theorem in [4] and see that the Inada
condition (10) can be replaced by the condition (11) and the existence and
uniqueness of the viscosity solution of HJB equation is still guaranteed.

Further, we will use instead of the fourth condition in Theorem 1 the
condition (11) which will be satisfied by an exponential utility function. It
means that there exists a unique viscosity solution to the HJB equation (17)—
(21) with an exponential utility function.

Now we can adjust and reformulate Lemma proved in [4] about the
properties of the value function as follows

Lemma 1. Under the conditions (8), (9) and the condition (11) the value
function V(t,1,h) (17) has the following properties:

(i) V(I,h,t) is concave and non-decreasing in | and in h,
(i) V(I,h,t) is strictly increasing in I,
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(iii) V(I,h,t) is strictly decreasing in t starting from some point,

(iv) 0<V(Lh,t)<O(|1] +|h|) uniformly in t.

In the next sections, we will first study three-dimensional PDE which we
obtain from the HJB equation after formal maximization, then we will try to
simplify this three-dimensional PDE as far as possible using its internal
algebraic structure. The properties of the value function listed in Lemma 1
we will use to define the reduction which keeps all properties of the original
optimization problem. It follows that if one can find a solution to the
reduced equation it will be also the unique viscosity solution of the optimi-
zation problem.

3. Lie group analyses of the optimization problem
with a general liquidation time distribution
and an exponential utility function

First, we study the case of an optimization problem with the EXP utility
function (4). As usual, we provide a formal maximization of (19) and (20) for
the chosen utility function in the H]JB equation (18) and get a three-dimen-
sional nonlinear PDE.

The HJB equation (18) after the formal maximization procedure will take
the form

Vt(Z,h,t)+%n2h2vm(l,h,t)+(rl+5h)V,(l,h,t)+(y—5)th (1,h,t)

(=1 VA (LI, 1) + 2@ —r)mphV, (L1, )V, (LB, 1) + 77 00 H2V, 2 (L, )
267V, (1, ,t)

+1V,(l,h,t)1nV,(l,h,t)—l(1+ln5(t))V,(l,h,t)—In—aVl(l,h,t) =0, (22
a a a

V —>0,t— o0

Here the investment z(l,h,t) and consumption c(l,h,t) strategies look

as follows in terms of the value function V/(I, h,t)

npohV, (L, 1) +(@=r)Vi(,ht)

z(l,h,t)= ) , (23)
_L (o0
(ht)=-1 (a\/l(l,h,t)} (24)

Equation (22) is a nonlinear three-dimensional PDE with the three
independent variables I,h,t. Such equations are demanding by study with
analytical or numerical methods. The Lie group analysis of a nonlinear PDE
is a proper tool to obtain the Lie algebra admitted by this equation. Using
the generators of this symmetry algebra one can reduce the dimension of the
equation (22) and make a problem better tractable.
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Roughly speaking to obtain internal Lie algebraic structure of a
differential equation on any function V(I,h,t) we present this equation as an

algebraic equation, for instance like A(l,h,t,V,V,,V,,V,,V,,V,,V,)=0 in
some special space called the jet bundle. This space is denoted by j™, where

n is the order of the highest derivative in the differential equation. All
derivatives will be now considered as new dependent variables. Thereafter
we study the properties of the solution manifold of this equation, which is
now a surface in the jet bundle ;. We take a generator U of a point

transformation in the corresponding jet bundle and act on the solution
manifold to define invariant subspaces. One obtains a large system of partial
differential equations on the coefficients of the generator U. Usually, this
system does not have any nontrivial solution at all, and correspondingly the
studied differential equation does not admit any symmetry. In seldom cases,
one gets nontrivial generators of the point transformations admitted by the
equation. The symmetry properties will then used to simplify the studied
equation and one obtains a so-called reduced equation. In detail, one can
find the description of this method in [11; 19], or in [1] where a short and
comprehensive introduction in this method is given as well as applications
to other PDEs arising in financial mathematics.

Here we formulate the main theorem of Lie group analysis for the
optimization problem with the EXP utility function.

Theorem 2. The HJB equation (22) with the EXP utility function (4) and with
a general liquidation time distribution ®(T) admits the four-dimensional Lie al-

gebra LY spanned by generators U,,U,,U,,U,, i.e. [} =<U,,U,,U,,U,>,
where

1o 0 -0 -
arol oV ov
1 — 0 10 0
U, =——(e"|le"dIn®(t))—+——, U, =e"—
’ ar( I ( )) ol rot ! ol
with following nontrivial commutation relations
U, 0,]=10,, [U;,U,]=1,, (26)

ie. L} is of the type A, ® A, after the classification provided in [22].
Except for the finite-dimensional Lie algebra L (25), the equation (22)

admits also an infinite-dimensional algebra L, =< y/(h,t)%> where the

function y(h,t) is any solution of the linear parabolic PDE

1
(0411, () (1= )y, (1, 1) = 0. (27)

Remark 2. First the formulation of this theorem was presented in [6].
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Proof. As it shown in [19], [11] or [1] we introduce the second jet bundle j®
and present the equation (22) in the form A(l,h,t,V,V,,V,,V,,V,,V,,V,,)=0 as
a function of these variables in the jet bundle j®. We look for generators of

the admitted Lie algebra in the form
U=t V) S a e (6 V)Lt a1, 6, V)L (L1, V)=, (28)
1 7 rvr al 2 7 rvr ah 3 7 rtr at ’71 7 rtr 6V 7

where the functions ¢&,¢,,&;,7, can be found using the overdetermined

system of determining equations

UPAWL LV ViV, Ve Vi Vi Vi) Lo = 0, (29)

where U? is the second prolongation of U in j®. We look at the action of
U® on A(,h,t,V,V,V,,V,,V,,V,,V,,V,) located on its solution subvariety
A =0 and obtain an overdetermined system of PDEs on the functions ¢, &,,
&, ,and n; from (28). This system has 130 PDEs on the functions &,,¢,,&;,7, .

Most of them are trivial and lead to the following conditions on the
functions

(6 =0,(5)v =0,(5)y =0,(&5), =S (t),
(&), =0,(&)y =0,
(&) =0,(5), =0,(&)y =0,

() =0,(m)vy =0,(m)y =1, (1, 1)

Consequently, the unknown functions in (28) have the following
structure

S(Lht,V)=8,(l+&,(t), &Lt V)=E(ht), &(LhtV)=E(t),
(LI V) = 1y (1, )V + 7, (B, ). (30)
Here &,(t),&,(8),&,(th), & (), n, (8, 1), and n,(t,h) are some functions
which will be defined later. To find these unknown functions we should

have a closer look at the nontrivial equations of the obtained system, that are
left. After all simplifications, we get the system of seven PDEs

21,2

h
7711‘ +UT771hh + (/u _5)]/”71/1 = O’ (31)
§3t _églz = Or
1
(u—=0)(&, —h&y, +héy,) _Eﬂzhzfzhh + 772h27711h =0,

hé&y, +2(&, —hé,,) =0,
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1 1 1
Sy ArE — =+ 86 —=—&, =0,
a a a ®

(@ =1)&s, +2nphm,y, =0,
(a=7)(& —hé,, +hés,)+ 77,00'211277111« =0.

2
We introduce the differential operator L= 2 + l772h2 6—2 +(u-o )hi
ot 2 oh oh

using this operator we can rewrite the first equation in the above system as
conditions on the functions 7,,(h,t) and 7,,(h,t) which appears in the last
equation of (30) correspondingly as L, (h,t)=0 and L, (h,t)=0. Other
equations in the above system do not contain the function 7, (h,t) at all. If
we now denote 7,,(h,t)=w(h,t) then we see that we proved the last
statement of the theorem, see (27).

Solving the system (31) for an arbitrary function ®(t) we obtain
& =cpe” +my L. & le” e gdt, 6 =0,
ar a @

& —const., g, =1y, V +1y, +y (i), Cy1Thy s Thyy — CONSE. (32)

The equations (32) contain four arbitrary constants &,c,,,7,,,7,, and a
function 7,,(h,t)=w(h,t) which is an arbitrary solution of Ly(h,t)=0.
Formulas (32) define four generators of the finite-dimensional Lie algebra
L7 (25) and the infinitely dimensional algebra L_ (27) as it was described
in Theorem 2.

Remark 3. The found four-dimensional Lie algebra describes the
symmetry property of the equation (22) for any function a(t). In [4; 5] we

have proved the theorem for existence and uniqueness of the solution of HJB

t

equation for a liquidation time distribution for which a(t) ~e ™ or faster as

t — o, therefore we will regard this type of the distribution studying the
analytical properties of the equation further on.
First, we explain the meaning of some generators of the Lie algebra

listed in Theorem 2. We start with the second generator U, = % It means

that the original value function V(I,h,t) which is a solution of the equation
(22), can be shifted on any constant and still be a solution of the same
equation. Neither allocation 7 nor consumption function ¢ will change
their values because they also depend only on the derivatives of the value
function. In some sense, it is a trivial symmetry, since the equation (22)
contains just the derivatives of V(I,h,t) so we certainly can add a constant to
this function and it still will be a solution of the equation. Following this
symmetry does not give a rise to any reductions of the studied three-
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dimensional PDE and this symmetry does not satisfy the boundary
condition V(I,h,t) —0,t — c because of that, it is not interesting by solving

of the possed optimization problem.

The fourth generator U, = e”% means that the value of the indepen-

dent variable ! can be shifted on the arbitrary value de”, i.e. the shift

I —>1+de", d—const. leaves the solution unaltered. From an economical
point of view, it means that the absolute value of the initial capital is not
important for this problem. We can arbitrarily shift the initial liquidity ! on
a bank account d,d >0 or credit d,d <0 yet [+ de" should be positive in the
initial time moment. The value function V(I h,t) as a solution to the
equation (22) and the allocation-consumption strategy (7,c) will be unal-
tered. This symmetry is trivial and it does not provide any reductions of the
original three-dimensional PDE.

We also get the infinitely dimensional algebra L, =< y/(h,t)% > where

the function y(h,t) is any solution of the linear PDE

1
Vit Sy + (u=8)hy, =0,
see Theorem 2. It has a special meaning - we can add any solution w(h,t) of
this equation to the value function V(I,h,t) without any changes of the
allocation-consumption strategy (z,c). From an economical point of view, it
means that the additional use of some financial instrument which is the

solution of , +%772h21//,,,, +(u—9)hy, =0 do not change the investment-allo-

cation strategies in this optimization problem. The boundary condition
V(l,h,t) > 0,t > leads to the following boundary condition on the

solution of this equation w(h,t)—>0,f—>c. It means it is a financial

instrument which value is defined just by the paper value of the illiquid
asset and time only, can not change the allocation-consumption strategy

(7,c). We notice also that after the substitution h=e*, t=-27/7°,

(u-o=3P) /P ~(u-0-3P e/
e

y(t,h)=h
parabolic equation of the type v, =v

v(r,x) we obtain on the function v(z,x) the

..~ which is well studied. The solution

methods as well as the fundamental solution of this equation are well
known.

3.1. Relation between two optimization problems:
one with the HARA and one with the EXP utility function

In our previous papers, we studied the optimization problem with an
illiquid asset in the case if the investor used the HARA utility function (1) or
the logarithmic utility function (2). It is well known that both problems are
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connected by limiting procedure if y —0. In the previous paper [3] we

proved that also analytic and Lie algebraic structures of both optimization
problems also connected with the same limiting procedure.

We noticed before that the EXP utility function is connected to the HARA
utility function UZ*** (c) with the limiting procedure by y — w0, see (4).

It means also that we cannot use directly the results of the Lie group
analysis obtained in previous works [2; 3] to compare the admitted Lie
algebras for the optimization problem with the HARA utility function in the
form U;"*(c) with the results in this work for an optimization problem
with an exponential utility function. Because of that, we should recalculate
the results of the Lie group analysis for the new form of the HARA utility
function. We remember that we first provide the formal maximization in the
HJB equation (18) and correspondingly to the chosen utility function we
obtain a three-dimensional PDE. In our previous works [2; 3] we used the
utility function U;**(c) in the form (1). Now if we insert in the HJB
equation (18) the HARA utility function U}*** (3) then we obtain the PDE

in the form
Vi(t,1,h) +%772h2v,m (t, L)+l +Sh)V,(t, 1 h)+(u—-8)hV,(t,1h)

(=12 VE (1, 1) + 2(a = r)mphV, (LI, (1,1 1) + 77 * 02V, (1,1, h)
267V, (t,1,h)

2 1 /4
+(1 _7/7) (BT V,(t,1h) T —1;7\/1(15,1,}1) =0, V.. -0 (33)
The previous equation and (33) differ analytically in the last terms, from
an economical point of view they describe equivalent optimization
problems. The Lie group analysis of the previous equation was provided in
[3]. We can use the same method and find the admitted Lie group for the
equation (33) or use a substitution. Indeed if we take the substitutions

Z=l-1‘7,fz=h,?=t,17=V+1‘—7j5(t)dt (34)
ar /4
then the HJB equation in [3] on the function V(I,7,7) will be replaced by the
equation (33) on the value function V(I,h,t).

We formulate the results of the Lie group analysis in the following

theorem

Theorem 3. The equation (33) admits the three-dimensional Lie algebra Ly 2

spanned by generators L};ARAZ =<U,,U,, U, >, where

U1 =£, U2 = ertgl U3 =( +1__ng+}1£+}/‘/£, (35)
ov ol ar Jol  oh ov
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for any liquidation time distribution. Moreover, if and only if the liquidation time

distribution has the exponential form, i.e. ®(t)=de™, where d,k are constants

the studied equation admits a four-dimensional Lie algebra L2 with an additio-
nal generator

0 P
U, =2 v 36
T Moy (36)

HARA.
2
L4

ie. =<U,,U,,U,, U, >.

Except for the finite-dimensional Lie algebras (35) and (36) correspondingly
equation (33) admits also an infinite-dimensional algebra L, =< y/(h,t)%> where

the function y(h,t) is any solution of the linear PDE

1
(411, () + (= )y, 1, 1) = 0. (37)

A

The Lie algebra Ly"""? has the following non-zero commutator relations

[U,,U,]=yU,, [U,,U,]=1,. (38)
The Lie algebra LZARAZ has the following non-zero commutator relations
[U,,U,]=»U,,[U,,U,]=-«U,,
[U,,U,]=1,, [U,,U,]=-U,. (39)

We will not provide the proof of Theorem 3 because it is quite similar to

the proof of the previous Theorem 3 for the equation (22).

It is easy to see that both algebras L, ! presented in [3] and L,

have the same commutation relations (39) and are isomorph. We prove that
the admitted Lie algebras are also similar because of the substitution (34). It
means that the optimization problems with the utility functions U;*** and
with Uj*** are equivalent not only from an economical and an analytical
but also from the Lie algebraic point of view.

Now we have a correct form of generators of the Lie algebra to study a
limiting procedure by y — . Indeed using the properties of the generators

of the Lie algebra we obtain from (35)

Uf=i, U;°=e” 0/ U;:lg_ i
ar Ol ov

z 40
ov ol (40)

Now we compare this Lie algebraic structure with the described in
Theorem 2. First, we see that both three-dimensional PDEs have the same

infinite-dimensional algebra L, =< w(h,t)% >. Then we compare the finite —
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dimensional algebra (40) with (25) and see that the finite-dimensional
algebras in these cases are essentially different. In the case of the U;"**(c)

utility function and a general liquidation time distribution, we have after
limiting transition y — oo the three-dimensional algebra (40) and in the case

of the EXP utility function, we got the four-dimensional algebra (25). These
algebras do not connect with the limiting procedure by y — o as well as

both three-dimensional PDEs (33) and (22) are not connected with this
limiting procedure. Also the HJB problems have different analytical
structures. Other sides it is easy to see that all three generators (40) coincide
with the three of the four generators (25). Lie algebra (25) is in some way
extension of the Lie algebra (40). It means that using the exponential utility
function makes the corresponding optimization problem smoother from the
Lie algebraic point of view.

We see that by limiting procedure y — e neither the analytic nor the Lie

algebraic structure of the optimization problem will be preserved. If in the
previous cases [3] of the HARA and LOG utility functions it was sufficient to
study the case of the HARA utility and then just take a limit by y -0 to

obtain the corresponding results for the optimization problem with LOG
utility function now we should study the optimization problem with the
exponential utility function in own rights step-by-step independently from
the case of the HARA utility function.

3.2. Relation between two optimization problems correspondingly
one with the EXP and one with the EXPp utility function

The EXPp utility function (5) is very close to the EXP function (4), the
functions are connected by an affine transformation. Analogously to the
previous chapter we can formulate and prove the main theorem of the Lie
group analysis for the HJB optimization problem with the positive
exponential utility function. We skip this part because we are able to provide
an analytical substitution which connect both problems. It is easy to see that
if we make following transformations of the variables I,h,t,V in equation
(22)

I=1+—, h=h, t=}, (41)

V(8= V(i F)+ L [@(t)at,
a

then the final equation in variables I,h,f,V coincide with HJB equation with
the EXPp utility function. Because of the substitution (41) is an invertible
analytical one-to-one substitution we have to do with two identical
optimization problems. The analytical and the Lie algebraic structures of the
optimization problems with the EXP and EXPp utility functions are
equivalent and it is enough to study one of these problems in detail.
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4. Optimal system of subalgebras of L;*" and related invariant reductions
of the corresponding three-dimensional PDE

To find all reductions and in this way to find all classes of the none-
quivalent group invariant solutions of a differential equation Ovsiannikov in
[20] has introduced the idea of an optimal system of subalgebras for a given
symmetry algebra of the differential equation. This idea is now widely used
for PDEs and systems of ODEs arising in different areas of sciences [13; 14; 21].

Now we will study a complete set of possible reductions of the three-
dimensional PDE (22) to two-dimensional PDEs. For this purpose, we need
an optimal system of subalgebras of L. As before in [3] we use an optimal
system developed in [22] for the real four-dimensional Lie algebras of this
type. To make the comparison of the results transparent we introduce in this
Section the same notations for the generators of L;*" as in [3; 22].

On the basis (25) of L, there are only two non-zero commutation
relations (26). If we introduce notations like in the paper [22], i.e. we denote
U, =¢; where i=1,...,4 then we can rewrite the relations (26) as

[e1rez]=ezr [63’e4]=e4' (42)

Now we can see that L}** corresponds to the algebras of the type A, ® A,

in the classification of [22] where also optimal systems of subalgebras for all
real three and four-dimensional solvable Lie algebras are provided. The
corresponding system of optimal subalgebras of L}*" is listed in Table.

The optimal system of one-, two- and three- dimensional subalgebras of L}*",

where @ is a parameter such that —c0 <@ <

Dimension of System of optimal subalgebras of algebra L}*"

the subalgebra

1
hl =<eg, >,h2 =<e, >,h3 =<e, >,
h, =<e, +we, >, h; =<e, te, >,

h, =<e, te, > h, =<e, te, >

2
hy =<e,, e, > hy, =<e,,e, >,
th =< 62’63 >’h11 =< 62’64 >’
h, =<e, +we,,e, > h, =<e,+we e, > h,=<e *e,e,>,
h=<e,te,,e, > h,=<e +e,e, te, >
3

hy, =<e,,e;,e, > I =<e e, e >,

hyy =<e,,e;,e, >Ny =<e,,e;,€,>,

hy =<e, te,,e,,e, > hy, =<e, +we,,e,,e,>
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Now we are going to study all possible invariant reductions of the main
equation (22).
Let us first note that the subgroups H,, H,, and H, generated by

subalgebras h, =< S , hy=<e" %5 and h, =< IEEICEN correspon-
ov ol ov ol

dingly, do not give us any interesting reductions so we omit the detailed study
of these cases here. We start with the first interesting and nontrivial case.
Case H,(h,). The subalgebra h, is spanned by the generator e,

= = 1 rt —rt T a 1 a
h, =< e, >=< —;(e e dlnd)(t))5+;—>. (43)
To find all invariants of the subgroup H, we solve the related
characteristic system of equations
dl dt _dV _dh

rt —rt - 1 O 0
(e Ie dln <I>(t)) .

_ L
ar
where the last two equations of the system present a formal notation that

shows that the independent variable /1 and the dependent variable V are
now invariants under the action of the subgroup H,. We can obtain other

independent invariants solving the system above. So we obtain a set of
independent invariants

inv, = z= 1+ Lo fedna(t) —llnE(t) —l(1 +Ina), inv, =h,  (45)
ar ar ar
inv, = W(z,h)=V(l,h,t). (46)

The invariants (45) can be used as the new independent variables z,h
and the invariant (46) as the new dependent variable W(t,z) to reduce the
three-dimensional PDE (22) to a two-dimensional one

%nthWhh +(u—S8hW, +(rz+ Sh)W, +1WZ InW, (47)
a
_(@=rf W+ 2a=nnphWW,, +1°p o W5 _

20°W,,

In (21) we describe the boundary condition and in Lemma 1 we
formulate the main properties of the value function. Now we have to
reformulate the boundary condition on the function W(z,h) after the

substitution (45). To make further remarks transparent we take first as an
example the simples form of the liquidation time distribution and suppose

that ®(t)=e™, i.e. we have to do with exponential liquidation time
distribution. Then the new variable z will take the form

z=l+£t+l(£—1—lna) (48)
ar ar\r
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It means that z is increasing if [ and/or ¢ are growing up. But it leads
to contradiction between the properties of the function W(z,h)=V(l,h,t).
On one side the boundary condition demands that the value function tends
to zero for t — o, other sides that the same function is strictly increasing by
I - . Because after the invariant substitution the new variable z is the
sum of these two old variables | and ¢ we are not able to solve this contra-
diction. A similar inconsistency problem arising if we use another form of
the function ®(t). Following this reduction cannot be used to solve the

optimization problem.
Case H,(h,). Now we look for invariants of the subgroup H,. The

corresponding subalgebra /i, is spanned by the generator e, + we,, i.e.

0,00 vy 0, (49)

h, =< l(l—a)e”J.e_”dlma(t))EJr r ot ov

ar

We need to regard two special cases @ =0 and @ # 0 here. If ® =0 then

16 . 0
h, =< S>=< ——_V —>, 50
e P (50)

The invariants of the group H, are
inv, =h, inv, =t, inv, =W(h,t)=V(,h,t)e".

From the last relation follows that in this case, the value function has the
form V(I,h,t)=e " W(h,t), and the complete dependence on I is described
just by the factor e ™. It means that we obtain a decreasing function
V(l,h,t) in the variable | in contradiction to the properties of a value

function (see Lemma 1). It means that this reduction does not provide any
meaningful solutions to our problem.

Now we can move according to a standard procedure to find the
invariants of H, when @ # 0. We obtain three independent invariants using

a corresponding characteristic system
) 1 .= 1. — t .
inv, =z=I+—e .[e dIn®(t)-—In®(t)——, inv, = h, (51)
ar ar aw

inv, = W(z,h)=V({,h,t)e . (52)

Analogously substituting expressions for the invariants z as the new inde-
pendent variable and W(z,h) as the new dependent variables into (22) we get

%nzhzl/\/,l,l +(u— MW, +(rz+Sh)W, +1wZ InW,
a

(@ =1 W, +2(a—rnphWW,, +n’ p*a’ i’ W,
- 262 W (53)

—1(l+(1+lna)jWZ—LW=O.
a\ [0
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We prove now a compatibility of the invariant substitutions (51) and the
boundary condition (21). As before we look for the new invariant variables

(51)—(52) in the case of exponential liquidation time with a(t) =¢ ™ then
these formulas take the form

2=1+22" 140 & ino, =k, (54)
arw ar
V(t,1,h)=W(z,h)e *, @#0. (55)

From (54) follows that if we chose an arbitrary parameter @ =r /x then

the variable z up to a constant shift coincides with the old variable . The
relation (55) shows that the boundary condition (21) is met with every
solution to (53). We see also that for other positive values of the parameter
o the invariant variables (54)—(55) are compatible with the boundary
condition (21).

Similar to the case of the exponential time distribution we can study
other types of liquidation time distributions. For instance, we look at the

frequently used Weibull distribution with a(t) = ¢ /" where the invariant

variables will take the form

k "
e"T'(k,rt)+
arkt A (k,rt) ar

z=1+

t —it, inv, =h, (56)
aw

/Ik

V(L) =W(z,he *, o0, (57)

here I'(k,rt) is the upper incomplete gamma function.

For the studied optimization problem, the most interesting case appears
if the liquidation time distribution has a local maximum as we expect it in
the real world. The Weibull distribution has a local maximum for the
parameter k>1. Because of the asymptotic behavior of the expression
e"T(k,rt) > r"'t*" as t—>o we obtain that for k>1 the variable

z—>1+ t* as t > oo. It means that also for the Weibull distribution we

arA*
have compatibility of the invariant substitutions (56)—(57) with the
boundary condition (21).

We notice that the investment 7(z,/1) and consumption c(z,t,h) in the

case H, look as

7Z(Z,h) = [_ 77/00'th112+ (a _T)Wz j, C(Z,t,h) - lln(%J-{—Lt, o> 0,
oW a aw. aw

zz

z

where W(z,h) is a solution of the equation (48).
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Case H,(h;). According to the first line of Table the subalgebra h,
corresponding to the subgroup H; algebra is spanned by

1 0 0
h.=<e te, >=<| —x¢" | ==V —>. 58
57 AT (ar ¢ j@l ov 58)

Using a standard procedure to determine the invariants of the subgroup
H. we obtain three independent invariants as a solution of the characteristic

system, they have a form

ar

1
inv, =h, inv, =t, inv, = o(h,t) = e*" V(I h,t). (59)

It means also that the complete dependence of the value function

ar

- I
V(l,h,t) on the variable [ is described just by the factor e =" . If

t>lln(ar) then the value function will be decreasing function in [ by
r

ar

choosing the plus sign in the denominator of the fraction — I and it

rt

1+tare
will be increasing function in [ if we choose the minus sign in the
denominator of the fraction.

Because the value function for the optimization problem should be
increasing function in I so we need to study just this one case. Therefore we

ar

1
choose as a new dependent variable the function v(h,t)=e'"" V(I,h,t).
Substituting the new dependent variable v(h,t) into (22) we get a two-
dimensional PDE

Ut+l772h20hh+(#_5)hvh++ ach—-1+1In r(Dt(t) v+vlnov
2 are”" -1 g

are —

(a=r)  (a=ryph = (are" =1)'n’p’h" v,

=0, v(h,t),,, —>0.

2 02 0_2 h 2 a2 1"2 v t—o0
After Lemma 1 the value function V(I,h,t) cannot have exponential
growth in [ as we obtain it now. It means that the invariant substitution (59)
is inconsistent with the possed optimization problem.
Case H,(h,). The last one-dimensional subalgebra in the list of the

optimal system of subalgebras in Table is spanned by e, +e,

0 16] 8> (60)

_ _ l rt —rt T P T _
h, =<e, te, >—<i(—ar(e je dlnq)(t))al+rat +8V

According to a standard procedure, we obtain following invariants of
the subgroup H,

inv, =z= 1+ Lo J‘e’”dlna(t)—llna(t), inv, =h, (61)
ar ar
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inv, =W(z,h)=V(t,[,h)Frt. (62)

Using these invariants (61), (62) as the new variables z,h,W(z,h) and
substituting them into (22) we obtain a two-dimensional PDE on W(z,h)

%nthWhh +(u—S8)hW, +(rz+ Sh)W, +1WZ InW,_+r (63)
a

B ) 2 B 2 2 2712 2
(a1 W2+2(a r)n/ZhWZWzﬁU p oW, +1(1+1na)WZ =0
20°W,, “

In this case, we see the inconsistency between the boundary condition
(21) which demands that V(t,[,h)—>0 as t—> o and the invariant
substitutions (61), (62) which say that the expression V(t,I,h)+rt depends
juston z,h and not from the variable f.

There are a total of four meaningful reductions of the three-dimensional
PDE (22) for the case of the EXP utility function and the general liquidation
time distribution a(t) by using one-dimensional subalgebras of the algebra
LX" . Just one of these reductions which correspond to the case H, with
®#0, i.e. the substitutions (51), (52) are consistent with the boundary
condition (21) and the two-dimensional PDE (53) is a corresponding
reduction. This equation can be studied further with numerical methods.

In Table are listed also two and three-dimensional subalgebras of L}*".

Using these subalgebras maybe we can find the deeper reductions of the
PDE (22) for instance to ordinary differential equations.

Case Hg(hy). We take the first two-dimensional subalgebra listed in
Table, i.e. the subalgebra hy;=<e¢,,e,>. We rewrite the characteristic
systems to the first generator e, in terms of the invariants of e, (45), (46)

then e, takes the form e, = laﬂ—wi Solving a corresponding chara-
ar oz

cteristic system we obtain a new invariant
inve1 =ov(h)=W(z,h)e™, (64)

which we use now as a new dependent variable to reduce the equation (47)
to an ODE

1\ 2
; 2 2 0 _ 2 _ .
lnthU‘ _ 77 p hZ ( ) +((ILI 5)0- (a r)npjhv

2 2 v o?

2

—(aréh + (a—r)° jv —roln(-arv) = 0. (65)
20
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In terms of original variables [,h,t, and V(I,h,t) the substitution looks

as follows

V(I h,t)=v(h)e ™, (66)

z= l+le”je-”d1n5(t) —llnE(t) —l(1 +Ina).
ar ar ar

Now we obtain a reduction of the three-dimensional PDE (22) to an
ODE. But we cannot use this reduction, because it is inconsistent with the
properties of the value function V(I,h,t) listed in the Lemma 1. The value

function is an increasing function in variable ! and V(I,h,t)>0, it means
also ©v(h) should be a positive function. From the first expression in (66)
follows that V(I,h,t) is decreasing in z and following in the variable [ and
from the equation (65) follows that the expression In(—arv) is well defined
just for negative functions v(h).

Case H,,(h,,). Similar to the previous case we study now the case of
h,, =<(e, + we;),e, > and after the substitution

V(t,1Lh) = o(h)exp(—arl - " e dInd(t) + In d(t)) (67)

we obtain an ODE on the function v(h)

1\ 2

; 2 2 0 _ 2 _ :

%nthU‘ _ 772[) hZ ( ) +((ILI 5)0- (a r)npjhv
0

—[ar§h+(az_—z)zjv+r(l+ln a)v —rvln(-arv) = 0. (68)

If we can find a positive solution to this equation then we get the
solution to the original optimization problem. It is easy to see that the last
term in the equation (68) will be complex-valued if the function v(h)>0. It

means that it is not possible to find a positive solution to this equation. This
reduction is not compatible with the conditions possed on the optimization
problem. Like in the previous case we see that also other properties of the
value function listed in Lemma 1 cannot be satisfied if the value function
takes the form (67).

All other two — and three — dimensional subalgebras listed in Table do
not give any meaningful reductions of the original equation (22), so we will
not regard them in detail.

We studied the complete set of all possible reductions of the original
three-dimensional PDE (22) to simpler differential equations. We see that not
all of the reductions are reasonable for the optimization problem. Just one of
them represented by the two-dimensional PDE satisfies all conditions. It is
the main result of this Section and we formulate this result as a theorem
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Theorem 4. The main three-dimensional H|B equation (22) admits the unique
symmetry reduction to the two-dimensional PDE (53) after the substitutions (51) —
(52) which satisfies all conditions of the posed optimization problem. The
corresponding investment — consumption strategies are given in (58).

5. Conclusion

In this paper, we study a portfolio optimization problem for a basket
consisting of a risk-free liquid, risky liquid, and risky illiquid assets where
the investor prefers to use an exponential utility function. The illiquid asset
is sold in a random moment T with a known distribution of the liquidation

time. It is a distribution with a survival function a(t), satisfying very
general conditions (8). Typically one suppose that the liquidation time

distribution is an exponential one, i.e. 5(t)= e, t>0,x>0, or of the

Weibull type with ®(f)=¢ ", with >0,k>0,4>0. The Weibull
distribution turns to the exponential distribution by k=1 and one can
understand it as a generalization of the exponential distribution. Based on
the economical motivation we choose k>1 because of in this case the
Weibull probability density function has a local maximum.

Before in papers [3; 5] we studied similar portfolio optimization
problems where the investor used the HARA and LOG utility functions
correspondingly instead of the exponential utility function as in this paper.

Both the HARA utility function as well as the LOG utility function were
widely used before in optimization problems with a random income and for
different settings of the portfolio optimization problems. Usually, it was
going on the optimization problems with a portfolio that includes an illiquid
asset that was sold in a deterministic moment, i.e. on a portfolio
optimization problem with a finite time horizon. Other authors supposed
that the illiquid asset is not sold at all, i.e. they studied a portfolio
optimization problem with the infinite time horizon. In previous papers [3],
[5] we demonstrated the connection between these two problems. We also
showed that for y >0 we obtain U;"* ) —>U"", as well as formally a
three-dimensional HJB equation (18) corresponding to the HARA utility
function transforms into the HJB equation with the LOG utility function.
Then we proved independently from the form of the survival function a(t)

that the Lie algebraic structure of the PDE with Lie logarithmic utility can be
seen as a limit of the algebraic structure of the PDE with the HARA utility
functionas y —> 0.

Now we provided a complete Lie group symmetry analysis for the
optimization problem with an exponential utility function, i.e. for the three-

dimensional PDE (22) which contains an arbitrary function ®(t) . The results
are formulated in Theorem 2. We obtained that this PDE admits the four-
dimensional Lie algebras L. We prove also that the optimization
problems with different forms of exponential utility functions are equivalent
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up to the one-to-one analytical substitution. In other words, the optimization
problems are identical from any point of view: an economical, analytical or
Lie algebraic one.

We also investigated a connection between the optimization problem
with the HARA utility function (3) and with the EXP utility function in
Section 3.1. Even though the HARA utility function is connected to the EXP
utility function by y — « as we mentioned in (4) we do not get the expected

connection between the corresponding optimization problems. Instead of
that, we obtain quite different structures of the invariant variables by the
study of the symmetry reductions of the main equation (22). In the case of

the HARA utility function, typical invariant variables were the fraction é

and time ¢. It means that in the case of the HARA or LOG utility function
the value function depends in the first place from the relation between the
values of the liquid and illiquid assets. It is completely independent of the
absolute value of his liquid part or from the absolute value of his illiquid

part of wealth, but it depends on é . For instance, the investor in the HARA
case, as we proved it before, should increase his consumption rapidly if the
relation % falls, independently how many millions of dollars the investor

has as liquid part at the moment.

Here in the case of the exponential utility function, the situation is quite
different. As follows from equation (46), the behavior of the investor depends
now on two variables, on the value of the illiquid asset & and on the
combined variable z which contains the liquid part of wealth and an
economically modulated time. As a consequence, the absolute value of the
illiquid part of wealth plays a large role. The variable z tells us that the
influence of a large amount of a liquid asset plays the same role as the
possibility to wait a long time. By the way, this difference in the behavior of
the invariant variables and the radical change of the investment-consumption
strategies is to explain by the fact that the risk tolerance in the case of the
HARA utility function is a linear function of the consumption ¢ and in the

. - . .. 1
case of the exponential utility the risk tolerance is just a constant R(c) =—.
a

A further difference between the optimization problems with the HARA
and an exponential utility function is related to the structure of the admitted
Lie algebras. In the cases of the HARA and LOG utility functions, the
corresponding three-dimensional PDEs have admitted three-dimensional

main Lie algebras. Just by the special choice of a liquidation time

Kt

distribution, i.e. only for the exponential function 5(t)=e’ we got an

extension of these Lie algebras to the four-dimensional ones. Here in the case
of the exponential utility function, we obtain from the beginning the four-
dimensional Lie algebra as the symmetry algebras of the corresponding
PDE. It is remarkable that in this case the four-dimensional Lie algebras do
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not allow any extension independently from the form of ®(t) . It can be seen

by the solving of the system of equation (31) in the proof of Theorem 2.

In the previous paper [3] we proved that the algebra L;°° can be

ARA,

obtained as a limit case of L'** by y—0. Here we see that L (or

HARA2 )

correspondingly L, and L} are quite different and they do not

connect by y — o as well as they do not have any connections between

analytical structures of their generators independently on the form of the
liquidation time distribution.

In our paper, we pay attention to the internal structure of the admitted
algebra L7 to obtain convenient and useful reductions of the main

equation (22). Further on we use the system of optimal subalgebras provided
in [22] and get corresponding nonequivalent invariant reductions of the
three-dimensional PDEs (22) to two-dimensional PDEs. They describe the
complete set of solutions that can not be transformed into each other with
the help of the transformations of the admitted symmetry group. We show
that the three-dimensional PDE can be reduced to corresponding two-
dimensional ones in Section 4. The low-dimensional PDEs are much more
convenient for further analytical or numerical studies. We also provide the
formulas for the optimal investment-consumption policies in invariant
variables using solutions of the reduced equation. We demonstrate that
between meaningful reductions there exists one (53) which is consistent with
the boundary condition (21) and with the expected properties of the value
function.

We remark also a different level of influence of the parameters on the
HJB equation and the admitted Lie algebraic structure. The HJB equation
contains seven parameters t,a,0, i,0,1n,p which define the behavior of
the liquid and illiquid asset, and one parameter a which is fixed by the
exponential utility function. There are also some parameters which define

the liquidation time distribution, for instance, it is the parameter x if we
—xt

take the exponential distribution with a(t) =e

k if we take the Weibull distribution with ®(t)= e/ 2" If we look at the
structure of the Lie algebra provided in Theorem 2 we see that the
generators of the Lie algebra depend on the parameters r,a, and parameters
of the liquidation time distribution only. The algebra changes their structure
if one or some of these parameters vanishing. Roughly said the most
influence on the form of the solution of this optimization problem has
interest rate r, the type of the investor's utility function, and a marked
defined liquidation time distribution for the illiquid asset. These parameters
define the invariant variables and the analytical structure of the solutions.
Summing up, we carry a complete Lie group analysis for the
optimization problem with the exponential utility function and for a general
liquidation time distribution. We determine the reduced equation and
corresponding optimal policies as it formulates in the Theorem 4.

or two parameters A and
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