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THE CLOSED PIECEWISE UNIFORM STRING REVISITED 

 
We reconsider the composite string model introduced 30 years ago to 

study the vacuum energy. The model consists of a scalar field, describing the 
transversal vibrations of a string consisting of piecewise constant sections 
with different tensions and mass densities, keeping the speed of light constant 
across the section. We consider the spectrum using transfer matrices and 
Chebyshev polynomials to get a closed formula for the eigenfrequencies. We 
calculate vacuum and free energy as well as the entropy of this system in two 
approaches, one using contour integration and another one using a Hurwitz 
zeta function. The latter results in a representation in terms of finite sums 
over polynomials. Several limiting cases are considered as well, for instance, 
the high-temperature expansion, which is expressed in terms of the heat kernel 
coefficients. The vacuum energy has no ultraviolet divergences, and the 
corresponding heat kernel coefficient 1a  is zero due to the constancy of the 
speed of light. This is in parallel to a similar situation in macroscopic electro-
dynamics. 

 
Мы заново рассматриваем модель кусочно-однородной струны, 

предложенную 30 лет назад для того, чтобы исследовать энергию 
вакуума. Поперечные колебания струны, состоящей из кусочно-
постоянных сегментов с разными натяжениями и плотностями массы, 
описываются скалярным полем, причем в данной модели скорость света 
при переходе одного участка струны к другому сохраняется. Используя 
T-матрицы и полиномы Чебышева, мы получаем замкнутую формулу 
для собственных частот и находим спектр. Мы вычисляем вакуумную 
и свободную энергию, а также энтропию этой системы двумя 
способами: методом контурного интегрирования и с помощью дзета-
функции Гурвица. Второй способ приводит к представлению в виде 
конечных сумм многочленов. Рассмотрены также несколько предельных 
случаев, например высокотемпературная асимптотика, которая выра-
жается через коэффициенты теплового ядра. Вакуумная энергия не 
имеет ультрафиолетовых расходимостей, и соответствующий коэф-
фициент теплового ядра 1a  равен нулю вследствие постоянства ско-
рости света вдоль струны. Аналогичное сокращению расходимостей на-
блюдается в макроскопической электродинамике . 

 
Keywords: piecewise uniform string, vacuum energy, heat kernel coefficients, 

zeta function, Chebyshev polynomials, high temperature expansion 
 
Ключевые слова: кусочно-однородная струна, вакуумная энергия, коэф-

фициенты теплового ядра, дзета-функция, полиномы Чебышева, высокотемпе-
ратурное разложение 

 
1. Introduction 

 
In the piecewise uniform string model [1], a closed or open string is 

considered, which consists of two or more segments. This is a generalization 
of a homogeneous relativistic string with the same string tension T  
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everywhere. In opposite to the standard case of a homogeneous string, this 
string consists of homogeneous segments with different string tensions iT  
and mass densities, i , such that their ratio is just the constant speed of 
light,  

 = .i

i

T
c


 (1) 

We assume that alternating sections with different iT  and i  repeat 
periodically and that the string is closed. 

The canonical quantization of this model, which is also called composite 
string model, requires a target space with the dimension = 26D  [2]. 
However, in the string potential, the dimension appears just as a factor 
( 2)D  in front of the first quantum correction (the Casimir energy). The 
latter is calculated in (1 + 1)-dimensional space of the string world surface 
and coincides with the renormalized vacuum energy of a scalar field which 
describes the transversal vibrations of the string. This scalar field ( , )    
obeys the (1 + 1)-dimensional wave equation  

 
2 2

2 2 = 0,
 

  
   

 (2) 

with the matching conditions 

 = 0 = 0
= 0 = 0

| = | , = ,x L x L I II
x L x L

T T
  
  

 

 
 

 (3) 

at the junctions, which imply the continuity of the displacement of the string 
and of the restoring force. Obviously, because of equations (1) and (2), the 
model is relativistic. 

In this model, we are primarily interested in the dispersion relation and 
the band structure of the string excitation spectrum. Second, we consider the 
vacuum energy of excitations, that is, the Casimir effect associated with this 
system. Finally, we introduce finite temperature and examine the correspon-
ding thermodynamic quantities. The inclusion of impurities may be of ad-
ditional interest. The merit of this model, which it shares with several others, 
is its simplicity, which makes it possible to study the physical quantities 
mentioned most explicitly and easily. 

The piecewise uniform string was first considered in [1], and shortly 
thereafter in [3] a much simpler representation was found for the model, 
which in [4] was generalized to a string with 2N  equal sections. In [4], a 
string with three pieces was studied. Its vacuum energy has shown a non 
monotone (in opposite to the two-piece case, see below) dependence on the 
two ratios of the tensions. We mention also an open composite string model 
[5]. 

In the papers [2; 6] the thermodynamic quantities were calculated for a 
two-piece and 2N-piece strings, and the Hagedorn (critical) temperature was 
found, which increases with the number of string segments and inverse 
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proportional to 1D . The negative Casimir energy of the composite string 
has prompted some speculations about the importance of the model for 
cosmology [6]. In [7], a twisted string was considered together with possible 
relations to processes in the early universe and to gravity. A generalization 
to a charged string placed in a magnetic field was studied in [8]. In this 
paper also a variational principle for the string was set-up. In [9] an 
interesting scaling property was found. It appears that the ratio of the 
vacuum energies, ( ) = ( ) / (0)N Nf x E x E , is approximately independent of N , 
provided 2N  , and lies in the interval 0 < ( ) < 1f x . 

There are interesting links to the composite string model and 
neighboring topics. Let us start with an analogy in macroscopic 
electrodynamics. If one considers some material body having permittivity   

and permeability  , the speed of light inside is = 1/c  . In such systems, 

the vacuum energy of the electromagnetic field has specific ultraviolet 
divergences which are even today not fully understood. For the first time 
this problem was observed in [10], in detail it was investigated in [11]. This 
divergence is absent if the speeds of light inside and outside the material 
bodies are equal. It must be mentioned that even for equal speeds of light 
across an interface, the electromagnetic fields are different, obeying well-
known matching conditions on the the interface. Boiling down to (1 + 1) 
dimensions, in the composite string model we observe the same situation. 

Further similar (1 + 1)-dimensional periodic objects are nanowires and 
optical lattices. There is a huge amount of papers on this topic and we let us 
mention only the first, [12], which introduced the Kronig-Penney model. Of 
special interest for their simplicity are also models with background 
potentials with zero range support; for a recent review see [13] and for the 
most general case in the sense of selfadjoint extensions see [14]. There is an 
analogy between closed composite 2N  string discussed in the present paper 
and a  -ring, which is a chain of  -potentials placed on a circle. In the 
recent papers [15; 16], a formalism was put forward for calculating the 
vacuum energy in one-dimensional periodic backgrounds formed of 
generalized  -potentials. The use of Chebyshev polynomials allowed to 
significantly simplify the calculations. In Sect. 2 we apply this approach to 
the 2N piecewise string. In [17] Casimir energies for self-similar (fractal-like) 
sets of parallel plates with  -potential separated by distances 

= , , , ...
2 4 8
a a a

z a  were studied. It was observed that these systems manifest an 

analogy to the theory of the piecewise uniform string. 
In most of the above mentioned papers on the composite string model, 

much effort was put into the investigations of different regularizations of the 
vacuum energy of the string. However, looking from the point of the heat 
kernel expansion on these, one observes that the decisive coefficient 1a  

(which comes in (1 + 1)-dimensions in place of 2a  in (3 + 1)) is zero (see below 

in Sect. 4.3). In such case, as known from the general theory (see, e. g., Chapt. 4 
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in [18]), all divergences can be removed uniquely, not leaving room for any 
ambiguity. In some regularizations, for instance, in the zeta functional one, 
there are no divergences at all. For this reason, we will be very brief on this 
topic. 

Another interesting observation concerns entropy in Casimir effect like 
configurations, where negative entropy was observed, first in [19], for a 
recent overview see the introduction in [20] and for single standing objects 
see [21—23]. Thus, it is necessary to consider the question of what entropy a 
piecewise uniform string will show. 

In the present paper, we reconsider the closed composite string and 
calculate vacuum and free energies as well as the entropy using integral 
representation and sum representation as well. 

We use zeta functional regularization and calculate the heat kernel 
coefficients, pointing out the uniqueness of the result. Also, we get the high 
and low-temperature asymptotics of the free energy and demonstrating how 
the general scheme is applied in the given case. We add not much, but we 
are interested in a more streamlined and most transparent and unified 
formulation of this topic.  

Throughout the paper we use units with B= = = 1c k . 

 
2. The piecewise uniform string and its spectrum 

 
We consider a piecewise uniform closed string composed of 2N  

segments. After Fourier transform in  , the solution of the string equation,  

 2 2( ) ( ) = 0,      (4) 

consists of plane wave segments,  

 ( ) ( )( ) = ( ) ( ),   ( ) = ,i an i an
n n n n n

n

A e B e               (5) 

and we use the notation  

 
1, ( 1) < < ,

( ) =
0, .n

a n an
elsewhere


 





 (6) 

The limits of fields and their derivatives at the string junctions are 
denoted by  

 
0

( )
= .

( )
n

n
n an

 


 


 

 
 
 

 (7) 

With the shorthand notation,  

 = ,n
n

n

A
B

 
  

 
 (8) 
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the expression (7) can be rewritten as  

 = = ,n n
n n

n n

A B
K

i A i B


 
  

  
 (9) 

1= = ,
i a i a

n n
n ni a i a

n n

A e B e
KQ

i A e i B e

 

 
 






 
 

 
 

with the matrices  

 
1 1 0

= , = .
0

i a

i a

e
K Q

i i e



 

  
     

 (10) 

The matching conditions (3) at a junction can also be written using a 
matrix, nM ,  

 = .n n nM     (11) 

For the piecewise uniform string this matrix reads  

 1( 1)

1 0
= ,

0
nnM

x


 
  
 

 (12) 

where x  is the ratio of the string tensions  

 = .I

II

T
x

T
 (13) 

For comparison, we mention the corresponding matrix,  

 

2

1
0

1
= ,

1
.

11

M




 


 
  

 
  

 (14) 

where   and   are some couplings, for the more general setting of 

generalized delta functions at the junctions, as used, for example, in [23]. 
The transfer matrix nT  is defined as to relate the solutions in neighboring 

segments,  

 1= .n n nT    (15) 

Inserting (9) and (10) into (11),  

 1= ,n n nM K KQ    (16) 

we get  

 1 1= .n nT Q K M K   (17) 
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For two neighboring segments of the string, having with (12)  

 
1 0 1 0

: = , : = ,
0 , 0 1 /n nodd n M even n M

x x
   
   
   

 (18) 

we define  

 ( ) ( )= .n odd n evenT T T  (19) 

This matrix does not depend on n  and it takes the form  

 * *= ,
W Z

T
Z W
 
 
 

 (20) 

with  

  2 2 21
= (1 ) (1 ) ,

4
i aW x e x

x
    (21) 

 
2

21
= 1 .

4
i ax

Z e
x


   

In (21), the parameter a  is the length of a single section. It is connected 
with the length L  of the string and the number N  of the pairs of sections by  

 = .
2
L

a
N

 (22) 

For a string with non-equal segments one would have to put different a 's 
into the Q 's, (10), corresponding to the two matrices entering (19). Accor-
dingly, the expressions in (21) would become more complicated. 

The transfer matrix has the property  

 det = 1,T  (23) 

preserving unitarity. In fact, (21) and (22) correspond to Eqs. (13) and (14) in 
[24]. 

Now, repeatedly applying (15) , we get with  

 2 1 2 2 1 1 1=N N NT T T    (24) 

a relation between the first element of the string and any other element. To 
obtain the closed string with 2N  elements we demand periodicity,  

 2 1 1= .N   (25) 

At this place, it should be mentioned that a quasi-periodic closure of the 
string,  

 2 1 1= ,i
N e 
   (26) 

results also in real eigenfrequencies. The interpretation could be a charged 
string, allowed to oscillate only in parallel to a magnetic field penetrating the 
loop (other couplings to a magnetic field were considered in [8]). In the 
antiperiodic case, =  , one comes to the twisted string considered in [7]. 
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With (25), we are faced with a homogeneous system of equations and its 
determinant must vanish. We define with  

  2 2 1 1( ) det 1N NT T T     (27) 

the mode generating function. Its zeros, i. e., the solutions of the equation  

 ( ) = 0,  (28) 

are the eigenfrequencies for the vibrations of a closed composite string. Since 
we consider a string of equal pairs of sections, all iT  in (27) are equal and the 
mode generating function simplifies to  

 ( ) = det( 1).NT   (29) 

Now, as a matrix obeys its characteristic equation, using the property 
(23) and introducing the notation  

 
1

,
2

tr T   (30) 

one arrives at the relation  

 2 = 2 1.T T   (31) 

Repeatedly multiplying the equation (31) by T  and each time substitu-
ting the right-hand side of the equation (31) for 2T , we obtain  

 1 2= ( ) ( ).n
n nT T u u    (32) 

Here, the nu  are Chebyshev polynomials,  

 
sin(( 1) )

( ) = , cos( ) = .
sin( )n

n
u


  




 (33) 

For a chain of delta functions, the approach with Chebychev polyno-
mials was used in [25] for a finite size Kronig-Penney model. Applied there 
to expressions like (24) with =iT T , these relations gave closed, explicit 
expressions for the amplitudes of the wave function. The same would 
happen for the composite string; however, we do not go into that detail. We 
mention, the in [24] a recursive formula was found, which gives the same 
results as the application of the Chebyshev polynomials. 

Using the above formulas we get from (29)  

 1 2( ) = det( ( ) ( ( ) 1)),N NTu u       (34) 
2 2

1 1 2 2= ( ) 2 ( )( ( ) 1) ( ( ) 1) ,N N N Nu u u u            

for the mode generating function. After inserting (33), this expression can be 
simplified and we obtain  

 2( ) = 4 .sin
2
N    

 
 (35) 
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Rewriting the above equation as  ( ) = 2 iN iNe e      and defining 

1
=

1
x
x

 


, one can convert the expression (35) into the form,  

 
2

2 2 2 2 2

( ) = 2 (1 ) ( ),

= cos(2 ) (cos(2 ) ) (1 ) ,

N N N

a a

   

     


 



   

    
 (36) 

which was obtained in [24]. 
It should be mentioned [24], that the result (35), i. e., the expression for 

the determinant, can be obtained also in an easier way. Let 1,2  be the 
eigenvalues of the transfer matrix T ,  

 1,2det( 1) = 0.T   (37) 

With (23) we get  

 2
1,2

1
= 1 , = t .

2
i rT      (38) 

Now we consider (29) and diagonalize the matrix, not changing this way 
its determinant,  

   1
1 2

2

1, 0
( ) = det = 1 1

0, 1

N
N N

N


  


 

   
 

 (39) 

and inserting cos( )  for   we come also to (35) . 
We use the mode generating function in the form (35) as it allows one in 

the most instructive way to analyze the structure of the spectrum. The 
solutions of (35) are  

  2
= ,  .i

j
j integer

N


  (40) 

Computing 2  as the trace of the transfer matrix whith elements given 
by (20) and (21), we obtain from (33)  

  2 21
cos( ) = (1 ) (1 ) cos(2 ) .

4
x x a

x
      (41) 

This is the dispersion relation for the string under consideration. 
Obviously,   is the quasi momentum. To have a real spectrum, the 
condition  

 
2 2(1 ) (1 ) cos(2 )

1 1,
4

x x a
x

   
    (42) 

must hold, defining the zone structure. It should be mentioned, that the 
spectrum is completely discrete (since the closed string has finite spatial 
extend), and, strictly speaking, there are no bands. This is obvious especially 
in the case = 1x  of a completely homogeneous string having an equidistant 
spectrum. However, with more sections on the string, the eigenvalues start 
to group; forming zones eventually when their number reaches infinity. 
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Eq. (41) can be inverted easily,  

 
2

2

4 cos( ) (1 )
cos(2 ) = ,

(1 )
x x

a
x




 


 (43) 

and with j , (40) , we get explicit expressions,  

 ,

2
= ,   = 1, , ,  = 0,1, ,

2 2
j

n j

n N
j n

a

 


   
    

   (44) 

 ,

2 2
= ,   = 0, , ,  = 0,1, ,

2 2
j

n j

n N
j n

a

  


    
    

   

where we defined  

 
2

2

4 cos( ) (1 )
= arccos ,

(1 )
j

j

x x

x




  
   

 (45) 

for the eigenfrequencies. The arccos  is defined on its main branch. The 
constant mode, i. e., = 0 , is excluded since it does not contribute to the 
energy. An example is shown in Fig. 1. The degeneracy of the modes results 
in a weight function  

 
1      = ,

= 2
2   .

j

N
for N even and j

otherwise







 (46) 

 

       
 

Fig. 1. The spectrum according to eq. (41) for a string with = 40N  sections,  
= 0.3x  and = 1L . The dots denote the eigenvalues. For N   or L    

these approach the solid line 
 

The degeneracy is 2 except for the modes with =
2
N

j  for even N . 

 
3. Vacuum energy 

 
In zeta functional regularization, the vacuum energy is defined as  

 
2

1 2
0 ( )

( )

= .
2

s
s

n
n

E
    (47) 
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The sum goes over all nonzero eigenvalues ( )n  with the corresponding 

multiplicity. In our case, the eigenvalues are specified by (44). The arbitrary 
parameter   comes in with the regularization and is chosen as to preserve 
the correct dimension of the regularized energy. 

It should be mentioned that frequently the vacuum energy is considered 
relative to the vacuum energy of the empty space. Accordingly, in all papers 
on the composite string, it is considered relative to that of the homogeneous 
string. To be more precise, people consider the difference between the 
vacuum energy of the composite string and that of the homogeneous string. 
This procedure is meaningful in the case of an infinite space since its 
vacuum energy is proportional to its (infinite) volume. In the case of the 
closed string, which has with its finite length a finite 'volume', we consider 
the mentioned subtraction as superfluous and consider the complete 
vacuum energy. 

There are two (main) approaches to calculate the vacuum energy. One is 
to transform the sum in (47) into an integral and to move the integration path 
towards the imaginary axis. This way is especially preferable, not only by 
avoiding to work with oscillating quantities as one has typically for real 
frequencies but for easy separation of the volume contribution for problems in 
infinite volume. Also, it allows for an easy generalization to Matsubara 
representation (at finite temperature). The other way is a direct summation in 
(47). This is especially preferable for a linear spectrum, allowing easily for 
results in terms of the Riemann zeta function or related zeta functions. Many 
examples of this kind are collected in [26]. Below, we discuss both approaches. 

 
3.1. Vacuum energy in integral approach 

 
In this approach one starts from the frequencies ,n j  as solutions of the 

equation (28). With  

 2( ) = 4 ( ) ,   ( ) = sin ,
2
N

g g      
 

 (48) 

where   is given by (41), we define a modified mode generating function 

( )g   having zeros in the same locations as (28), but as single zeros. 
We are going to transform the sum in (47) into a contour integral. For 

that, we define with  

 0
0

( ) (1 )
( ) = ln ,   ( ) = ,

( ) 4

g N x
h g

g x

 
 




 (49) 

a function whose logarithmic derivative has single zeros in the eigenfrequ-
encies, ,n j , and which vanishes at the origin,  

 2

0
( ) .h


 


  (50) 
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With these, the vacuum energy becomes  

 2 1 2
0 = ( ),

2
s s

C

d
E h

i 
  


   (51) 

where we accounted for a factor of 2 which results from switching from the 
mode generating function ( )  to ( )g   in eq. (48). The contour C  encircles 
the real  -axis. We mention that we excluded any contribution from the 
origin by dividing by 0 ( )g   in (49). This way we exclude the constant mode 
which is in this case with a massless field a zero-mode and which should not 
enter in zeta-functional regularization. 

We continue with the Wick rotation, = i  , on the upper half of the 
integration path C , and = i   on the lower half. We get with  

 2 1 2
0

0

cos( )
= ( ),s ss

E d h i


   



   (52) 

a representation in terms of imaginary frequency  , which is, as usual, 
convenient for further work. The function ( )h i  has a quite simple explicit 
form,  

2 2(1 ) (1 ) cosh(2 ) 2 (1 )
( ) = ln sinh a ln ,

2 4 4

x x a N a xN
h i rccosh

x x

 


       
         

 (53) 

which is in terms of real functions. 
We mention the asymptotic properties  

 2

0
( ) ,    ( )h i h i

 
   

 
   (54) 

allowing the integration in (52) to converge for 
3

1 < <
2

s . 

We have to construct the analytic continuation to = 0s . For this, we defi-
ne functions  

 3

(1 )
= ,   = ( 1)ln ln ,

2 21 2

inf
infas xh N N

h h N
x

 
 

           
 (55) 

=sub ash h h  
having the properties  

 2 2

0
,   ,sub subh h

 
  

 
   (56) 

2

0
,   .as ash h

 
 

 
   

Here we dropped for a moment the arguments of the functions to 
simplify notations. The function infh  is just the asymptotic expansion of h , 
(53), for    up to exponentially decreasing terms. We split the vacuum 
energy according to  

 0 = ,fin asE E E  (57) 
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into finite and asymptotic parts with  

 2 2

0 0

(1 2 )cos( )1
= ,   = .fin sub as s s ass s

E d h E d h


   
 

  
   (58) 

In finE  we could remove the regularization by putting = 0s  due to the 
decrease (56). Also, we integrated by parts which is possible without surface 
terms, also due to (56). This expression has to be evaluated numerically. 

The asymptotic part, asE  in (58), can be integrated explicitly with the 
result  

2

2

( / ) (2 1)cos( )
=

6 sin (2 1) (4 1)cos
3 6

s
as L N s s

E
s s

 
 




       
   

 (59) 

0

4 2 4
2 cos 1 [(N 1)ln ln(N)] N cos (4 1) N sin .

3 3 3 3 3

s s
s

    
                       

       
 

The analytic continuation to = 0s  reveals no pole. This way, within the 
zeta functional regularization there is no ultraviolet divergence. This is in 
accordance with the heat kernel coefficients which will be discussed in 
Sect. 4.3. Finally, for = 0s , the asymptotic part reads  

  0

4
= ( 1)ln ln .

23 3 3 3
as N N

E N N
L

 
     

 
 (60) 

To compute the vacuum energy we scale out the dimensional 

parameters, 
2a
  , to rewrite the finite part of the energy, (58), in the form  

 
0

= ,fin subN L
E d h i

L N
 


  

 
   (61) 

where the integral is now dimensionless. Examples for 0E  are shown in Fig. 2. 
 

 
 

Fig. 2. The vacuum energy 0E , (57), (61), for a composite string as  

a function of the ratio x , (13), of the string tensions for several numbers N   
of sections of the string. N  increases from top to bottom (color online).  

The length of the string is = 1L  
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3.2. Vacuum energy in sum approach 
 
The sum representation (47) of the vacuum energy needs to be specified in 

terms of the eigenfrequencies (44). Accounting for the multiplicity (46), it reads  

    
2 21 2 1 2

0 1 2
=1 =0 =0 =0

1
= 2 2 2 .

2(2 )

N N

s s

j j j js
j n j n

E n n
a

      

   
        



 
     
  

   (62) 

It should be mentioned, that the account for the multiplicity, which here 
is taken care of by the function j , happens automatically in the integral 

approach. 
The sums over n  define Hurwitz zeta functions, as first in this context 

mentioned in [3], and we arrive at  

 
1 2 2 2

0 H H
=1 =0

1
= 2 1, 2 1,1 .

2 2 2

N N
s

j j
j j

j j

E s s
a

     
 

   
       
 

                      

   (63) 

Now the analytic continuation in s  is given by the properties of the 
Hurwitz zeta function and we arrive immediately at  

 
2 2

0 H H
=1 =0

= 1, 1,1 .
2 2 2

N N

j j
j j

j j

E
a

     
 

   
      
 

           
     

   (64) 

Again, as in the preceding section, we observe no pole in s . We mention 
the known relation H H( 1,1 ) = ( 1, )a a    , allowing for some insignificant 
simplification. Further, we mention that the Hurwitz zeta function with 
negative integer argument has an explicit expression in terms of Bernoulli 
polynomials. Specifically in our case  

 2
H

1 1
( 1, ) =

2 6
a a a      

 
 (65) 

holds, showing that we have with (64) an expression for the vacuum energy 
of the composite string in terms of finite sums over polynomials. This 
representation is, of course, equivalent to (64) and (57) in the sense that these 
and (64) are different representations of the same quantity. The sum repre-
sentation (64) appears to be somehow simpler. 

 
4. Limiting cases of the vacuum energy and the heat kernel coefficients 

 
4.1. The cases = 0x  and = 1x  

 
The limiting cases = 0x  and = 1x  (homogeneous string) can be easiest 

obtained from the sum representation (64). For = 0x  we mention with (45) 

= 0j  and with H

1
( 1,0) =

12
    we get a sum over the j 's in the form  
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2 2

=1 =0

= 2 .

N N

j j
j j

N 

   
      

   (66) 

For = 1x  we note =j j   and use the property  

 H
=1

1
1, =

12

n

k

k
n n

    
 

  (67) 

of the Hurwitz zeta function. The sums in (64) collect just into the form (67). 
As a result, for this two cases we get  

 
2

0| =0 0| =1= ,   = .
6 6x x

N
E E

L L
 

   (68) 

The same results can be obtained from the integral approach. 
 

4.2. Limiting cases N   
 
We consider this limit in both representations and start with the integral 

representation, Sect. 3.1. First, we consider finE , (58). It is possible to perform 
the limit N   under the sign of the integral. We get from (53) and (55)  

 sub sub
infN

h h

  (69) 

 
2 2

3

(1 ) (1 ) cosh( ) 1 1
= a ln .

2 4 21 2
sub
inf

x xN N x
h rccosh N

x x

 
 

      
      

 

We denote the finite part of the vacuum energy in this limit by fin
infE  and 

with (69) it has the representation  

 
0

1
= .fin sub

inf infE d h




  (70) 

From the asymptotic part, (60), we have in this limit  

 
4 1 1

= ln
23 3 2

as
inf

N x
E

x

  
  

  
 (71) 

and together we get  

 0 .fin as
inf infN

E E E


  (72) 

which is proportional to N , and after restoring the dimensions to 2N . 
Another approach starts with the sum representation (64). In the limit 

N  , the sum over j  turns into an integration according to the rules  

 
2

0
=0

,   .
2 2

N

j

j N
d

N

 
 

 
  

    (73) 
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In this limit, the differences between the starting points in the two sums 
in (64), as well as the factor j , become unimportant and we end up with  

 
2

0 H0

( )2
( ),   ( ) = 1, ,

2N

N
E w x w x d

L

  
 



  
   (74) 

with  

 
2

2

4 cos( ) (1 )
( ) = arccos .

(1 )
x x

x


 
 


 (75) 

Both expressions, (72) and (74), represent the same limit of the vacuum 
energy. The first one involves infinite integration, the other a finite one. Both 
integrations cannot be done analytically; however, it is easy to evaluate them 
numerically. A plot is shown in Fig. 3. In this plot, for = 0x , we note from 
(75) ( ) = 0   and we get 2

0 /6E N L . In = 1x  we have ( ) =    and the 

integration over   gives zero. 
 

 
 

Fig. 3. The limiting slope ( )w x  of the vacuum energy (74) for N    

as a function of the ratio x  

 
4.3. The heat kernel coefficients 

 

The heat kernel expansion and its coefficients are the universal tool to 
investigate the ultraviolet behavior of the vacuum energy. At once this is a 
semiclassical expansion since in powers of   and, at once, in inverse powers 
of the mass (if present). In terms of eigenvalues, the heat kernel and its 
expansion are defined as,  

 
2
( )

/20
( ) 0

1
( ) = ,

(4 )

t n n
ndt

n n

K t e a t
t









   (76) 
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where d  is the space dimension, = 1d  in our case, and the na  are the heat 
kernel coefficients. To calculate the coefficients we use the relation to the 
zeta function ( )s P , (93), of the composite string. Using an integral represen-
tation we get  

 
2
( )

0 0
( )

( ) = = ( ).
( ) ( )

s s
t n

n

dt t dt t
s e K t

t s t s




 

  P  (77) 

The behavior of the integrand for small t  results in poles which can be de-
termined by inserting the expansion (76) into (77). Integrating t  from 0  to 1  
one gets the pole part,  

 
0

1
( ) = ,

14 ( )
2

n

n

a
s

s s n





  

P   (78) 

and the dots denote the regular part. This formula allows calculating the 
coefficients from the residua,  

 
1

=
2

= 4 ( ) ( ).rn
s n

a s ses  


 P  (79) 

As a special case we mentions that for 
1

=
2

n  the relation  

 1
2

= 2 (0)a  P  (80) 

follows. 
Next, we use the information on ( )s P , which is collected in the Ap-

pendix, eq. (97). For = 0n , we have the pole of ( )s P  in 
1

=
2

s . For 
1

=
2

n  we 

have the pole of the gamma function in = 0s  and for = 1n  we have no pole. 
Accordingly, the coefficient is zero, which is in agreement with the absence 
of ultraviolet divergences observed earlier. With there remarks, the coef-
ficients become  

 0 = ,a L 1
2

= ,a  1 = 0.a  (81) 

All higher order coefficients are zero. This is in agreement with the 
observation that there are only exponentially small corrections to the 
asymptotic expansion infh , defined in (55), of the mode generating function 
h , (53), in (52). 

It should be mentioned that the coefficient 1
2

a , which is non-zero, does 

not depend on the parameters of the string. For instance, it does not 
disappear when taking the limit of the homogeneous string ( 1x  ). Similar 
features were observed in [27] for a flat plasma sheet in the TM-mode and, 
similar, in [28] for a spherical plasma shell. As discussed in [21] (Sect. 4), this 
is related to the Klauder-phenomenon stating that some singular perturba-
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tions (like the jump between the sections of the string in our case) cannot be 
turned off to restore the unperturbed situation. Doubts in the physical 
meaning of such a situation were discussed in [29]. 

 
5. The free energy 

 
At finite temperature, there are basically two approaches. One is in 

terms of the Matsubara frequencies, the other in terms of real frequencies. In 
the first one, which was used also in the literature [6; 30; 31], one starts from 
the integral representation in terms of imaginary frequencies like (52) after 
integrating by parts,  

 2 2
0

0

(1 2 )cos( )
= ( ),s ss s

E d h i


   





  (82) 

and substitutes the integration by a sum,  

 
0

=0

( ) (2 ),
'

l

d f T f Tl  


   (83) 

(the contribution from = 0l  enters with weight 
1
2

). As mentioned, this 

expression contains the ultraviolet divergence. In the given case, the 
simplest way to get rid of it is to subtract the homogeneous string contri-
bution and to treat it separately. After that, one can put = 0s  and comes to 
the conventional shape of this representation. 

The other representation is  

  /, ,

,

= ln 1 .
2

Tn j n j

n j

F T e
  

  
 

  (84) 

The first term in the parenthesis is the vacuum energy and the second is 
the temperature-dependent part, TF , of the free energy. In the following, 

we focus on it and on the entropy =
F

S
T





. We represent these in the form  

 , ,
T

, ,

= ,   = ,n j n j

n j n j

F T f S s
T T

    
    

   
   (85) 

with  

    ( ) = ln 1 ,   ( ) = ln 1 .
1

f e g e
e

 


     


 (86) 

With the summations defined as in (62), since these sums are fast con-
verging now, one can easily produce numbers and plots. Examples are 
shown in Fig. 4. As can be seen, the free energy is monotone and so is the 
entropy. It has the right sign and vanished at the origin. Thus, the thermody-
namics of the considered system does not bear an interesting feature like 
that mentioned in the Introduction. 
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Fig. 4. The free energy (lower curve) and the entropy (upper curve)  
of the composite string for = 1N  (left panel) and = 16N , = 0.9x  (right panel) 

 
The limiting cases for small and high temperatures can be obtained 

easily, following Chapt. 5 in [18], for instance. The low-temperature beha-
vior, since the spectrum is discrete, is determined by the lowest non zero 

eigenvalue, 

2

0,1 2

2
4 cos( ) (1 )1

= arccos
2 (1 )

x x
N

a x





   
 

  
 

, in (44), to be  

  /0,1
T 0

1 .
T

T
F T e




   (87) 

For the high-temperature expansion we use the heat kernel expansion. 
The ready-to use formula (5.53) in [18] is for (3 + 1)-dimensions. Therefore we 
go back to (5.43),  

 
2

2

0
= ( ),

2 ( )

s
ts l

s
l

T dt t
F e K t

t s


  
   (88) 

where = 2l Tl   are the Matsubara frequencies, and we have to put = 0s  at 
the end. This is an expression of the free energy in terms of the heat kernel. 
The high-T  expansion follows from the heat kernel expansion. Inserting (76) 
with = 1d , and separating the contribution from = 0l , we arrive at  

 

1
2 2

2

0
0 =1

( ) 2 .
2 4 ( )

s n
ts l

s n
n l

T dt t
F s a e

t s
 



 
 



 
      

 P  (89) 

Now the integration over t  can be carried out. Subsequently, the sum 
over l  gives a Riemann zeta function and we arrive at  

 2 1 2 2
R

0

1
( )

2( ) (2 ) 2 (2 2 1) ,
2 4 ( )

s s n
s n

n

s nT
F s a T s n

s
   


 



    
     

 
 

P  (90) 
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which for = 1d  comes in place of (5.49) in [18]. Now we take the derivative, 
put = 0s  and arrive at the high-T  expansion in the form  

 2 1
0 1 1

2

ln( ) 1 1 4
(0) ln ( ).

6 2 42T

T T
F a T a T a O T

  
 





           
  

P  (91) 

Inserting the coefficients (81) we arrive at the expansion  

  


   
 2 1

ln( ) (0)
6 2T

L
F T T TP  (92) 

The corrections are exponentially small like in the case of the Casimir 
free energy for ideal parallel plates in accordance with the vanishing of the 
higher-order heat kernel coefficients. The first term is black-body radiation 
in the given case. 

 
6. Conclusions 

 
The composite string is an interesting model to study vacuum (Casimir) 

energy and thermodynamic properties in a non-trivial, but simple model. It 
allows us to demonstrate the basic technical tools and to get the most explicit 
results. The model itself is not very interesting; however easy generaliza-
tions may reveal more interesting features like Hagedorn temperature or 
instabilities, to mention two which were discussed in the literature. 

In the present paper, we recalculated the mentioned quantities in two 
representations. We used only zeta functional regularization well knowing 
that all other regularizations will be equivalent. The system has a vanishing 
heat kernel coefficient 1a . Thus, there are no ambiguities in its renormaliza-
tion and in zeta-functional regularization no renormalization is needed. The 
thermodynamic properties are most simple, free energy and entropy are mo-
notone functions; in opposite to some mentioned other simple systems. 

The authors hope that the above presentation of the topic may serve as a 
good starting point for more interesting applications and further develop-
ments. 

 
This paper is an extended version of a talk one of the authors (I. G. Pirozhenko) gave on 

The 10th International workshop «Waves in inhomogeneous media and integrable systems», 
held in September 24—25, 2020, at IKBFU (Kaliningrad, Russia), and we thank the organi-
zers for the opportunity to present this talk.  

 
Appendix: The zeta function of the composite string 

 
The zeta function ( )s P  of the composite string is the zeta function asso-

ciated with the operator P  which is determined by the equation (2) and the 
matching conditions (3) and (25). In terms of its eigenvalues, ( )n , it is given 

by  

 2
( )

( )

( ) = .s
n

n

s  P  (A.1) 
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This is similar to the definition (47) of the vacuum energy and the 
relation  

 
2

0

1
( ) = ( )

2 2

s

E s s
  P  (A.2) 

holds. Using the same steps which resulted in eq. (63), we get  
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H H
=1 =0

( ) = 2 , 2 ,1 .
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N N
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 P  (A.3) 

To continue we use the following properties of the Hurwitz zeta 
function,  

 H

1 1
(2 , ) =      ,

2 1 2
s a for s

s
  


  (A.4) 

H

1
(0, ) =

2
a a   

2
H

1 1
( 1, ) = .

2 6
a a a      

 
 

Further, we need to know that H'(0, )a  (the derivative with respect to s ) 
is a finite function of x  and N . 

With these properties, it is easy to get the following relations,  

 
1 1

( ) =      ,
12 2
2

N
s for s

s



 


P   (A.5) 

(0) = .
N
L
 P  

In the first one we used  

 
2 2

=1 =0

= 2

N N

j j
j j
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   (A.6) 

and for the second one, with the second line in (А.4), we note  

 
2 2

=1 =0

1 1
= 1.

2 2 2 2

N N

j j
j j

j j

 
 

 

   
         

       
   

   (A.7) 

Here all terms except the first one ( = 0j ) canceled and 0 = 0  holds. 

Finally, we mention that the value of ( )s P  at 
1

=
2

s   is the vacuum energy, 

(A.2), and the derivative in 
1

=
2

s   is a finite function. 
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