Список литературы

1. *Егоров А.И., Егоров И.П., Егорова Л.И.* Приводимые и полуприводимые метрические пространства линейных элементов и их место в теории движений: межвуз. сб. науч. тр. Пенза, 1991. С. 38—62.

A. Egorov

MAXIMALLY MOVING FINSLER SPACES AND THEIR GENERALIZATIONS FOR (p+1)-LACUNARITY OF MAIN CASE

There are found all metric functions of maximally moving Finsler spaces and their generalizations for the defined metric of different lacunarity of main case.

УДК 514.75

Н. А. Елисеева

(Калининградский государственный технический университет)

ИЗУЧЕНИЕ НОРМАЛЬНЫХ СВЯЗНОСТЕЙ, ИНДУЦИРУЕМЫХ В РАССЛОЕНИИ НОРМАЛЕЙ ВТОРОГО РОДА НА Л-ПОДРАССЛОЕНИИ Н(П)-РАСПРЕДЕЛЕНИЯ

Данная статья является продолжением работы [1]. Для нормальных связностей, индуцируемых на оснащенном в смысле Нордена — Бортолотти Λ -подрасслоении, найдены условия совпадения и вырождения в одну связность.

В работе используется следующая система индексов:

$$K, P, Q = \overline{1, n}; \ \overline{I}, \overline{K} = \overline{0, n}; \ p, q, s, t, f = \overline{1, r}; \ i, j, k = \overline{r + 1, m};$$

 $\alpha, \beta = \overline{m + 1, n - 1}; \ u, v, w, x = \overline{r + 1, n - 1}; \ \hat{u}, \hat{v}, \hat{w} = \overline{r + 1, n};$
 $\Phi = 0, 1; \ \Psi = \overline{0, 11}.$

Рассмотрим систему форм $\{\stackrel{\Phi\Psi}{\Theta}{}^0_{\hat{u}}, \stackrel{\Phi\Psi}{\Theta}{}^{\hat{v}}_{\hat{u}}\}$:

$$\begin{split} & \frac{00}{\Theta} \stackrel{0}{\Theta} = \Lambda_{wv}^{n} [v_{q}^{0} v_{n}^{q} \omega_{0}^{w} + \lambda_{n}^{w} \lambda_{n}^{u} \omega_{u}^{n} + \lambda_{n}^{w} (\mu_{n}^{0} - \lambda_{u}^{0} \lambda_{n}^{u}) \omega_{0}^{n} + \omega_{n}^{w} + v_{n}^{q} \omega_{q}^{w}], \\ & \frac{00}{\Theta} \stackrel{0}{}_{n} = \omega_{n}^{0} + \lambda_{u}^{0} \omega_{n}^{u} - v_{p}^{0} \omega_{n}^{p} + v_{n}^{p} [v_{pk}^{0} \omega_{0}^{k} + \lambda_{u}^{0} \omega_{p}^{u} - v_{p}^{0} (v_{q}^{0} \omega_{0}^{q} - \lambda_{u}^{0} \omega_{0}^{u})] + \\ & + \mu_{n}^{0} [\lambda_{n}^{u} \omega_{n}^{u} + (\mu_{n}^{0} - \lambda_{u}^{0} \lambda_{n}^{u}) \omega_{0}^{n}], \\ & \frac{00}{\Theta} \stackrel{u}{}_{v} = \Lambda_{n}^{uw} [d\Lambda_{wv}^{n} + (\Lambda_{wn}^{n} - \lambda_{w}^{0}) \lambda_{n}^{x} \Lambda_{xv}^{n} \omega_{0}^{n} + \Lambda_{xv}^{n} (\lambda_{w}^{0} \omega_{0}^{x} - \omega_{w}^{x})] + \\ & + \lambda_{n}^{x} \Lambda_{xv}^{n} \omega_{0}^{u} + \delta_{v}^{u} [\lambda_{n}^{w} \omega_{w}^{n} + v_{p}^{p} \omega_{p}^{n} + (\mu_{n}^{0} - \lambda_{w}^{0} \lambda_{n}^{w} + v_{p}^{0} v_{p}^{n}) \omega_{0}^{n} + \omega_{n}^{n}], \\ & \frac{00}{\Theta} \stackrel{n}{}_{v} = \Lambda_{n}^{u} [\lambda_{w}^{0} (\lambda_{n}^{w} \omega_{0}^{n} - \omega_{0}^{w}), \\ & \frac{00}{\Theta} \stackrel{n}{}_{n} = \omega_{n}^{n} [\lambda_{w}^{0} (\lambda_{n}^{w} \omega_{0}^{n} - \lambda_{w}^{0}) (v_{p}^{0} \omega_{0}^{p} - \lambda_{u}^{0} \omega_{0}^{u}) + \mu_{n}^{0} (\Lambda_{wn}^{n} - \lambda_{w}^{0}) \omega_{0}^{n} + v_{p}^{0} \omega_{w}^{p}] + \mu_{n}^{0} \omega_{0}^{v}, \\ & \frac{00}{\Theta} \stackrel{n}{}_{n} = \omega_{n}^{n} - \omega_{0}^{0} + v_{p}^{p} \omega_{p}^{n} + \lambda_{n}^{w} \omega_{n}^{n} - \lambda_{u}^{0} \omega_{0}^{u} + v_{p}^{0} \omega_{0}^{p} + (2\mu_{n}^{0} - \lambda_{u}^{0} \lambda_{n}^{u} + v_{p}^{0} v_{p}^{p}) \omega_{0}^{n}, \\ & \frac{00}{\Theta} \stackrel{n}{}_{n} = \omega_{n}^{n} - \omega_{0}^{0} + v_{p}^{p} \omega_{p}^{n} + \lambda_{n}^{u} \omega_{n}^{n} - \lambda_{u}^{0} \omega_{0}^{u} + v_{p}^{0} \omega_{0}^{p} + (2\mu_{n}^{0} - \lambda_{u}^{0} \lambda_{n}^{u} + v_{p}^{0} v_{p}^{p}) \omega_{0}^{n}, \\ & \frac{00}{\Theta} \stackrel{n}{}_{n} = \frac{00}{\Theta} \stackrel{n}{}_{v} + \frac{0}{\Gamma} \stackrel{n}{m} \mu_{n}^{0} [\omega_{0}^{u} + \Lambda_{n}^{uw} (\Lambda_{wn}^{n} - \lambda_{w}^{0}) \omega_{0}^{n}], \\ & \frac{00}{\Theta} \stackrel{n}{}_{n} = \frac{00}{\Theta} \stackrel{n}{}_{n} + \frac{0}{\Gamma} \stackrel{n}{m} \mu_{n}^{0} [\omega_{0}^{u} + \Lambda_{n}^{uw} (\Lambda_{wn}^{n} - \lambda_{w}^{0}) \omega_{0}^{n}], \\ & \frac{00}{\Theta} \stackrel{n}{}_{n} = \frac{00}{\Theta} \stackrel{n}{}_{n} + \frac{0}{\Gamma} \stackrel{n}{m} \mu_{n}^{0} [\omega_{0}^{u} + \Lambda_{n}^{uw} (\Lambda_{wn}^{n} - \lambda_{w}^{0}) \omega_{0}^{n}], \\ & \frac{00}{\Theta} \stackrel{n}{}_{n} = \frac{00}{\Theta} \stackrel{n}{}_{n} + \frac{1}{\Gamma} \stackrel{n}{n} \mu_{n}^{0} [\omega_{0}^{u} + \Lambda_{n}^{uw} (\Lambda_{wn}^{n} - \lambda_{w}^{0}) \omega_{$$

$$\frac{0}{\Gamma} {n \choose uv} = {0 \choose r} {n \choose uv} = {0 \choose r} {n \choose uv} = {\overline{\Lambda}_{uv}^n} = -{\Lambda_{uv}^n} = -{\Gamma_{uv}^n} {n \choose r} = {0 \choose r} {n \choose r} {n \choose r} = {0 \choose r} {n \choose$$

$$\begin{split} h_s &= \Lambda_{sn}^n - \Lambda_{si}^n \Lambda_{n}^{ij} \Lambda_{jn}^n - \Lambda_{s\alpha}^n \Lambda_{n}^{\alpha\beta} \Lambda_{\beta n}^n + \Lambda_{si}^n \Lambda_{n}^{ij} \Lambda_{j\alpha}^n \Lambda_{n}^{\alpha\beta} \Lambda_{\beta n}^n - \\ &- \Lambda_{si}^n \Lambda_{n}^{ij} \lambda_{j}^0 - \Lambda_{s\alpha}^n \Lambda_{n}^{\alpha\beta} \lambda_{\beta}^0 + \Lambda_{si}^n \Lambda_{n}^{ij} \Lambda_{j\alpha}^n \Lambda_{n}^{\alpha\beta} \lambda_{\beta}^0, \\ \frac{5}{\Gamma}_{np}^n &= -\frac{1}{2(r+2)} b_n^{tq} \Lambda_{n}^{sf} \left(\Lambda_{sp}^n \Lambda_{fqt}^n + \Lambda_{sq}^n \Lambda_{fpt}^n \right) - \Lambda_{qp}^n v_n^q + b_{pq}^n \Lambda_{n}^{qs} v_s^0, \\ \frac{6}{\Gamma}_{np}^n &= -a_p - \Lambda_{qp}^n v_n^q + v_p^0 = -\frac{6}{\Gamma}_{np}^n, \\ \frac{7}{\Gamma}_{np}^n &= -l_p - \Lambda_{qp}^n v_n^q + v_p^0 = -\frac{7}{\Gamma}_{np}^n, \\ \frac{8}{\Gamma}_{np}^n &= -e_p - \Lambda_{qp}^n v_n^q + v_p^0 = -\frac{8}{\Gamma}_{np}^n, \\ \frac{9}{\Gamma}_{np}^n &= C_p - 3B_p - 4\Lambda_{qp}^n v_n^q + 2b_{pq}^n \Lambda_{n}^{qs} v_s^0, \\ \frac{10}{\Gamma}_{np}^n &= C_p - \Lambda_{qp}^n v_n^q + \Lambda_{pq}^n \Lambda_{n}^{qs} v_s^0, \\ \frac{10}{\Gamma}_{np}^n &= C_p - \Lambda_{qp}^n v_n^q + \Lambda_{pq}^n \Lambda_{n}^{qs} v_s^0, \\ \frac{10}{\Gamma}_{np}^n &= C_p - \Lambda_{qp}^n v_n^q + \Lambda_{pq}^n \Lambda_{n}^{qs} v_s^0, \\ \frac{10}{\Gamma}_{np}^n &= C_p - \Lambda_{qp}^n v_n^q + \Lambda_{pq}^n \Lambda_{n}^{qs} v_s^0, \\ \frac{10}{\Gamma}_{np}^n &= C_p - \Lambda_{qp}^n v_n^q + \Lambda_{pq}^n \Lambda_{n}^{qs} v_s^0, \\ \frac{10}{\Gamma}_{np}^n &= C_p - \Lambda_{qp}^n v_n^q + \Lambda_{pq}^n \Lambda_{n}^{qs} v_s^0, \\ \frac{10}{\Gamma}_{np}^n &= C_p - \Lambda_{qp}^n v_n^q + \Lambda_{pq}^n \Lambda_{n}^{qs} v_s^0. \\ \end{pmatrix}$$

Строение функций, входящих в соотношения (1), (2), показано в работах [2; 3]. На оснащенном в смысле Нордена — Бортолотти Λ -подрасслоении в расслоении его нормалей 2-го рода индуцируются 24 нормальные связности $\stackrel{\Phi\Psi}{\nabla}^{\perp}$ [1], задаваемые системами слоевых форм $\{\stackrel{\Phi\Psi}{\Theta}^0_{\hat{u}}, \stackrel{\Phi\Psi}{\Theta}^{\hat{v}}_{\hat{u}}\}$. Связности $\stackrel{\Phi\Psi}{\nabla}^{\perp}$ являются двойственными [4] по отношению к связностям $\stackrel{\Phi\Psi}{\nabla}^{\perp}$ [2], индуцируемым в расслоении нормалей первого рода на оснащенном в смысле Нордена — Картана Λ -подрасслоении относительно инволютивного преобразования $J: \omega_{\overline{k}}^{\bar{I}} \to \overline{\omega}_{\overline{k}}^{\bar{I}}$ [3].

Теорема. Индуцируемая на оснащенном в смысле Нордена — Бортолотти Λ -подрасслоении тройка нормальных связностей $(\stackrel{\Phi^4}{\nabla}^\perp,\stackrel{\Phi^6}{\nabla}^\perp,\stackrel{\Phi^1}{\nabla}^\perp)$ вырождается в одну связность тогда и только тогда, когда любые две из них совпадают; аналогичное утверждение имеет место для троек нормальных связностей $(\stackrel{\Phi^4}{\nabla}^\perp,\stackrel{\Phi^7}{\nabla}^\perp,\stackrel{\Phi^2}{\nabla}^\perp), (\stackrel{\Phi^4}{\nabla}^\perp,\stackrel{\Phi^8}{\nabla}^\perp,\stackrel{\Phi^3}{\nabla}^\perp).$

На оснащенном в смысле Нордена — Бортолотти взаимном ($\Lambda^n_{pv}=0$) с полем симметрического тензора Λ^n_{pq} Λ -подрасслоении имеют место предложения:

- 1) нормальные связности $\stackrel{\Phi 1}{\nabla}^{\perp}$ и $\stackrel{\Phi 0}{\nabla}^{\perp}$ совпадают тогда и только тогда, когда полем нормалей второго рода является соответственно поле нормалей Михэйлеску m_a^0 ;
- 2) нормальные связности $\stackrel{\Phi_5}{\overline{\nabla}}^{\perp}$ и $\stackrel{\Phi_0}{\overline{\nabla}}^{\perp}$ совпадают тогда и только тогда, когда нормализация Λ -подрасслоения взаимна (например, таковой является нормализация Фубини $\{\Phi_n^p,\Phi_p^0\}$, Михэйлеску $\{m_n^p,m_p^0\}$), где

$$\Phi_n^p = \frac{1}{2} b_n^{pq} (C_q - b_q), \ \Phi_p^0 = \frac{1}{2} (C_p - b_p),$$
 (3)

$$m_n^p = -\frac{1}{2}b_n^{pq}(b_q + \Lambda_{qn}^n), \ m_p^0 = \frac{1}{2}(b_p - \Lambda_{pn}^n),$$
 (4)

строение функций, входящих в соотношения (3), (4), показано в работах [2; 3];

- 3) тройка нормальных связностей ($(\nabla^0)^\perp$, $(\nabla^0)^\perp$, $(\nabla^0)^\perp$) вырождается в одну связность тогда и только тогда, когда $(\nabla^0)^\perp$ расслоение нормализовано полями нормалей Фубини $(\nabla^0)^n$, $(\nabla^0)^n$,
- 4) для того чтобы четверка нормальных связностей ($\overline{\overline{V}}^{\perp}$, $\overline{\overline{V}}^{\pm}$, $\overline{\overline{V}}^{\pm}$, $\overline{\overline{V}}^{\pm}$) вырождалась в одну связность необходимо и достаточно, чтобы Λ -подрасслоение было нормализовано полями нормалей Михэйлеску m_n^p , m_n^0 ;
- 5) любые две связности из тройки ($\stackrel{\Phi 4}{\overline{\nabla}}^{\perp}$, $\stackrel{\Phi 1}{\overline{\nabla}}^{\perp}$, $\stackrel{\Phi 6}{\overline{\nabla}}^{\perp} \equiv \stackrel{\Phi 5}{\overline{\nabla}}^{\perp}$) совпадают тогда и только тогда, когда полем нормалей первого рода служит поле нормалей Михэйлеску m_n^p .

Список литературы

- 1. *Елисеева Н.А*. Нормальные связности, индуцируемые в расслоении нормалей второго рода на Λ-подрасслоении Н(П)-распределения // Диф. геом. многообр. фигур. Калининград, 2008. №39. С. 63—66.
- 2. *Елисеева Н*. А. Нормальные связности, индуцируемые в расслоении нормалей первого рода на Λ-подрасслонии Н(П)-распределения // Там же. 2006. № 37. С. 44—51.
- 3. *Елисеева Н. А.* Н(П)-распределения проективного пространства. Калининград, 2002. Деп. в ВИНИТИ РАН, № 206-В2002.
- 4. *Столяров А.В.* Дифференциальная геометрия полосы // Проблемы геометрии / ВИНИТИ. М., 1978. Т.10. С. 25—54.

N. Eliseeva

INVESTIGATION OF THE NORMAL CONNECTIONS, INDUCED IN A BUNDLE OF NORMALS OF THE 2-ND KIND ON Λ -SUBBUNDLE OF H(Π)-DISTRIBUTION

This article develops some ideas published in one of the previous article of the author [1]. The coincidence conditions of the normal connections, induced on equipped in sense of Norden — Bortolotti Λ -subbundle are indicated.

УДК 514.75

М.В. Кретов

(Российский государственный университет им. И. Канта, г. Калининград)

КОМПЛЕКСЫ КВАДРИК С ВЫРОЖДАЮЩИМСЯ В ЛИНИЮ МНОГООБРАЗИЕМ ЦЕНТРОВ

В трехмерном аффинном пространстве рассматриваются комплексы (трехпараметрические семейства) центральных невырожденных квадрик с вырождающимся в линию многообразием центров. Показано, что такие комплексы существуют. Найдены геометрические свойства исследуемых многообразий.