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Complete Riemannian manifolds
with Killing — Ricci and Codazzi — Ricci tensors

The purpose of this paper is to prove of Liouville type
theorems, i.e., theorems on the non-existence of Killing —
Ricci and Codazzi — Ricci tensors on complete non-com-
pact Riemannian manifolds. Our results complement the
two classical vanishing theorems from the last chapter of
famous Besse’s monograph on Einstein manifolds.
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1. Introduction

A. Gray introduced in [1] two classes of Riemannian manifolds

A and @, which are defined by the two following conditions on

the covariant derivative of the Ricci tensor. Firstly, a Riemannian

manifold (M , g) belongs to 4 if and only if its Ricci tensor Ric
is a Killing tensor, that is,

(V xRic)(Y,Z)+ (VyRic)(X,Z)+(V zRic)(X,Y)=0 (1.1)

for all X,Y,Z eTM . In this case, Ric is called the Killing —

Ricci tensor (see [2]). Second, a Riemannian manifold (M ,g)
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belongs to @ if and only if its Ricci tensor Ric is a Codazzi
tensor, that is,

(V yRic)(Y,Z)~(VyRic)(X,Z)=0 (1.2)

for all X,Y,Z eTM . In this case, Ric is called the Codazzi —
Ricci tensor (see [3]).

Obviously, all manifolds belonging to 4 or @, which are
known as Einstein-like manifolds, have constant scalar curvature
§ = traceg Ric. Moreover, any manifold that belongs to A N B
must have a parallel Ricci tensor. An example of this type of Eins-
tein-like manifolds is a Riemannian locally symmetric space (see
[4, p. 369]). More interesting examples which are Einstein-like but
not Einstein can be found in [5, p. 432—455].

The aim of this paper is to prove Liouville-type theorems, i.e.,
non-existence theorems for complete noncompact manifolds of
classes 4 and @. Our results complement two classical theorems
of the last chapter of Besse’s famous monograph [7].

2. Liouville-type theorems
for complete Einstein-like manifolds of class 41

Let (M, g) be a Riemannian Einstein-like manifold (M, g) of
class 4. Then its Ricci tensor Ric satisfies the equations (1.1) and
has a constant trace, i.e., the scalar curvatures =tracegRic s a

constant function. This also means that the Ricci tensor is a diver-
gence-free tensor.
It is known that if (M , g) is a compact (without boundary)

Einstein-like manifolds of class 4 with non-positive sectional
curvature, then V Ric = 0. If in addition there exists a point in M

where the sectional curvature of every two-plane is strictly negative,
then (M , g) is Einstein, i.e., its Ricci tensor satisfies Ric = p g for

some constant p (see [5, p. 451]).
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On the other hand, from [6] we conclude that the following
theorem holds: On a simply connected complete Riemannian mani-
fold (M, g) of nonpositive sectional curvature, any divergence-

free Killing 2-tensor, such that |¢|eL” for at least one

pE (O,oo +), is a parallel tensor field. If, in addition, the volume of

the manifold is infinite, then there exist no nonzero divergence-free
Killing 2-tensors. In turn, we recall here that a simply connected
complete Riemannian manifold (M , g) of nonpositive curvature is

called a Hadamard manifold after the Cartan — Hadamard theo-
rem (see, for example, [4, p. 241]). From the Cartan — Hadamard
theorem one can conclude, in particular, that no compact simply
connected manifold admits a metric of nonpositive curvature (see
also [4, p. 162]). Moreover, Hadamard manifolds have infinite vo-
lume (see [8]). Therefore, the Ricci tensor of a Hadamard
manifold, which is a Riemannian Einstein-like manifold (M , g) of

class A, is equals to zero. In this case, the sectional curvature
must vanishes in (M, g). Then (M, g) is a flat manifold. Again
(M , g) is a simply connected manifold, hence it follows that

(M, g) is isometric to the Euclidean space R".
Theorem 1. Let an n-dimensional Riemannian Einstein-like

manifold (M, g) of class A be a Hadamard manifold. If || (p” el’
for at least one p €(0,+), then (M, g) is isometric to the Eucli-

dean space R".

2. Liouville-type theorems
for complete Einstein-like manifolds of class 3

Let (M, g) be a Riemannian Einstein-like manifold (M, g) of
class ®. Then its Ricci tensor Ric satisfies the equations (1.2)
and has a constant trace, i. €. the scalar curvature s = tracegRic isa
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constant function. This also means that the Ricci tensor is a
divergence-free tensor. In this case, Ric is a symmetric harmonic
2-tensor (see [4, p. 350]).

The following classical Berger — Ebin theorem is well known:
If (M , g) is a compact (without boundary) Einstein-like manifolds

of class B with non-negative sectional curvature, then V Ric=0.

If in addition there exists a point in M where the sectional
curvature of every two-plane is strictly positive, then (M , g) is

Einstein (see [7, p. 445]).
On the other hand, from [9] we conclude the following theo-
rem: Let (M , g) be a connected complete noncompact Riemannian

manifold with nonnegative sectional curvature. Then there is no a
non-zero harmonic symmetric 2-tensor ¢ which satisfies the con-
dition ||§0|| e I for at least one p e (1,4+). Therefore, the Ricci

tensor of a connected complete noncompact Riemannian manifold
with nonnegative sectional curvature (M , g) of class @ is equals to

zero. In this case, the sectional curvature must vanishes in (M, g).
Then (M , g) is a flat manifold. Again if (M , g) is a simply connec-
ted manifold, hence it follows that (M, g) is isometric to the Eucli-
dean space R". Therefore, we can formulate a theorem.

Theorem 2. Let a Riemannian Einstein-like manifold (M, g)
of class B be a connected complete noncompact Riemannian

manifold with nonnegative sectional curvature. If || (0” e L’ for at

least one p e (1,+oo), then (M R g) is a flat manifold. If, moreover,
(M, g) is a simply connected manifold, then (M, g) is isometric

to the Euclidean space R".
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MonHble MHOroobpasus ¢ TeH3opamu
KunnuHra — Puyumn n Kogauum — Puyun

IMoctynuia B pegaxmro 20.03.2022 r.

Ilenbro paboTHI sBIAETCA 10KA3aTENBCTBO TEOPEM JIMYBUILIEBA THIIA,
TO €CTb TEOPEM HECYIIECTBOBAaHUS A TeH30poB Kuminura — Puuun u
Kopamnum — Puydn Ha MOJHOM HEKOMIIAKTHOM PHMaHOBOM MHOT000pa-
3un. Hamm pe3ynbraTsl JONOIHSIOT JIBE€ KIACCUYECKHE TEOPEMBI HCUE3-
HOBCHUS U3 TIOCIICAHEH TI1aBBI H3BecTHOM MoHOTpaduu A. becce.

Knrouesvie cnosa: moiHOe pUMaHOBO MHOroo0Opasme, Tensop Kui-
nuHra — Puaun, Tensop Kogariuun — Puyun, Teopemsr JInyBuiiea Tuna
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