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A SURPRISING TALE OF LONG-PERIODIC SPIN OSCILLATIONS  
IN THE SYNTHETIC ANTIFERROMAGNETS:  

SOME EXACT SOLUTIONS 
 

This article is devoted to construction of a mathematical theory capable of 
explaining those experimentally observable periodic magnetic oscillations in 
the synthetic antiferromagnet Pt/Co/Ir/Co/Pt that take place after a switch in 
the direction of an external magnetic field. In particular, we demonstrate that 
in order to understand the aforementioned phenomenon it is essential to first 
properly model the collisions between the magnetic domains of different spin 
orientations ( P  and AP ). The resulting model comprised of a system of 
nonlinear differential equations is closely examined, after which we propose a 
simple analytical method of construction of its exact solutions. This method is 
shown to generate an infinite family of solutions associated with the degener-
ate hypergeometric functions, parameterized by a natural number N. One of 
those solutions with N = 2 produces the magnetization function which perfect-
ly fits the experimental data. 

 
Данная работа посвящена построению математической теории, 

корректно объясняющей экспериментально наблюдаемые периодические 
осцилляции намагниченности в синтетическом антиферромагнетике 
Pt/Co/Ir/Co/Pt при изменении направления внешнего магнитного поля. 
Показано, что существенную роль в модели играют столкновения друг с 
другом магнитных доменов различной спиновой ориентированности  
( P  и AP ). Обсуждены особенности полученной системы нелинейных 
дифференциальных уравнений и предложен простой аналитический ме-
тод построения бесконечного множества решений этой системы, вы-
раженных через специальным образом выбранные вырожденные гипергео-
метрические функции, параметризованные целым числом N. Показано, 
что решение с N = 2 в точности совпадает с экспериментальной кривой 
намагниченности. 

 
Keywords: synthetic antiferromagnets, domain walls, Schrödinger equation, de-

generate hypergeometric equation.  
 

Ключевые слова: синтетические антиферромагнетики, доменные стенки, 
уравнение Шрёдингера, вырожденное гипергеометрическое уравнение. 

 
Introduction 

 
Ever since the pioneering work on the potential coupling between the ad-

jacent layers of different magnetic materials, published in 1986 (see [1—4]), the 
subject of multilayered ferro-, ferri, and anti-ferromamagnetics has never left 
the limelight. The realization of the fact that a subtle change in a thicknesses 
of a non-magnetic material — the «spacer» between two (or more) layers of 
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ferromagnets — can totally change the character of the interaction between 
those layers and switch it between non-existent (a very thick spacer) to ferro-
magnetic to antiferromagnetic came as a storm. Out of this storm a number 
of very interesting devices has emerged, including the spin valves and the 
synthetic antiferromagnets (SAF). The range of current and prospective ap-
plications of such devices is staggering; it ranges from the magnetic random 
access memory [5; 6] to the sensors for various biomedical applications [7; 8]. 

Despite the fact that a general mechanism at work in the SAF — the Ru-
derman — Kittel — Kasuya — Yosida (RKKY) coupling between the mag-
netic domains in different layers has been known since the end of 1950-s (see 
[9; 11]), the particulars of the behavior of magnetization in SAF are still ca-
pable of puzzling the scientists. One such enigma has been described in [12]: 
a very unusual non-monotonous relaxation pattern in a Pt/Co/Ir/Co/Pt 
multilayered SAF after the switching of the direction of the external magne-
tic field. This was rather unexpected as the equations normally used to de-
scribe the dynamics of the magnetic domains in SAF were all linear and did 
not predict the dynamics observed in [12]. 

A year later the answer has been found [13]: the culprit was shown to be 
the collisions between the different magnetic domain in the magnetic layers. 
This article serves as a mathematical supplement to [13] and is designed to 
provide a detailed mathematical exploration of the subject whereas [13] is 
dedicated mostly to the experimental and physical side of the research. 

 
The statement of the problem 

 

Our goal for this article would be to study the behavior of the coupled 
magnetic domains in the SAF with a perpendicular anisotropy after the 
switching of the external magnetic field. For certainty we will assume that 
the thicker of the two magnetic layers — the “anchor” — is the lowest of the 
two. A total of four types of magnetic domains are possible: two parallel 
states ( P  with spins in both magnetic layers looking up and P  where the 
spins point downwards) and two antiparallel ( AP  and AP  — the sign 
determined by the spin orientation in the anchor) — see Fig. 1. 

 

 
 

Fig. 1. The scheme of the SAF and the main types of the magnetic domains therein 
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Initially the SAF in its entirety consists of just one magnetic domain – the 
AP  type (for that end we switch on the external magnetic field and wait 
until the magnetization of SAF stabilizes). However, if we should turn on 
the external magnetic field again, but this time of opposite direction, the new 
types of domains will start emerging: the nuclei of the P  and the AP  pha-
ses. But, of course our sample being SAF, only one type — the AP  will sur-
vive in the end. 

With that being said, let us look at the simplest model of the dynamics of 
those three types of domains. 

Let z be a concentration density of AP+ nuclei;  
x — a density of P– nuclei; 
y — a density of the AP– nuclei; 
α(H,T) — an efficiency of the P– nuclei generation from the AP+ phase; 

 ,H T  — an efficency of AP– nuclei generation from the P– phase; 

γ(H,T) — an efficiency of the AP– nuclei generation from the AP+ phase. 
Naturally, since the P  phase is only transitory, and the total 

concentration is limited by the size of the sample, we conclude that the rate 
of growth of AP  must be proportional to both z (the more AP nuclei means 
more chance for an AP  to emerge) and the x (every P  nuclei has a chance 
to morph into AP  nuclei). For the same reason the growth of x shall also be 
proportional to z but be stifled by the big x (the more of them we have the 
more will convert to AP  phase). Finally, the finite size of the sample deter-
mines that the sum of all three types of nuclei must be a constant — in our 
case 1 (since we are working with the concentrations).  

This produces the following simple linear system: 

 

1

dx
z x

dt
dy

z x
dt
x y z

 

 

 

 

  









 (1) 

with the initial conditions corresponding to the starting P+ state at t = 0 are 
z = 1, x = 0, y = 0. Once we solve this system, calculating the total 
magnetization of SAF will be an easy task: 

   1         0.3     ,SM t M x y z     

where Ms1 would be the saturating magnetization of the thick layer. 
So, how do we solve (1)? First of all, if we sum up the first two equation 

in (1) we will end up with  

  ,z z     

whose general solution is 

 
0 .tz z e     
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Plugging this into the first equation in (1) produces the following 
equation on x: 

 
0 ,tx z e x      

which is an inhomogeneous linear differential equation. Its general solution is: 

 0 0
0 .ttz z

x x e e   
     

  
       

 

This we can of course use in the equation on y. Solving it and using the 
condition 0 0 01y x z    yields the following solution 

 0 0
01 .t tz z

y e x e  
       

     
              

 

The resulting magnetization M together with the experimental results 
are shown on Figure 2. 
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Fig. 2. Magnetic relaxation in Pt(3 nm)/Co(1.05 nm)/Ir(1.5 nm)/Co(0.7 nm)/Pt(3 nm)  

in the magnetic field – 1350 Oe at T = 100 K. Here M(t)  = MS1 (– x – 0.3y + z),  
where Ms1 is the saturating magnetization of the thick layer. The solid line  
is the exact solution of (1), the blue circles — the results of the observations  

(for further details see [13]) 
 
Everything looks good if not for one little thing: while the behaviour of 

the solution is motonous (owing to the linearity of the system (1)), at some 
values of the external magnetic field the magnetization’s dynamic is no lon-
ger monotonous. 

This can only mean one thing: at those values the model must be incorrect! 
 

The model with the domain interaction 
 
Let’s take into account the fact that in the process of their growth the P– 

and AP– domains inevitably bump into each other. In the process the P– → AP– 
transition takes place: a P- phase absorption by AP- phase. 
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To account for this absorption, we have to add two additional terms, 
proportional to the probability δxy of the nuclei approaching each other: 

1

,

dx
z x xy

dt
dy

z x xy
dt
x y z

  

  

  

  

  









 (2) 

where the coefficient δ describes the efficiency of the P– phase absorption by 
AP– phase. 

The initial conditions at t = 0 remain the same: z = 1, x = 0, y = 0. 
A close look at our system is in order… 
If we sum up first and second equations in (2), we’ll get: 

( )z z    , 

whose general solution is 

0
tz z e   (3) 

and     . According to (2), this yields the system: 

 1 0
ty x z e    , (4) 

 0 0
t tx z e z e x x           

 
 . (5) 

The equation (5) should look familiar to anyone proficient in the theory 
of O. D. E.’s: it is the famous Riccati equation [14]. One of its interesting 
properties if that this equation is homogenous with respect to the variables 
x  and x (but not t), which implies that (5) can be linearized by the following 
change of variable: 

                                      
1

( ) ln ( ),
d

x t f t
dt

   (6) 

which converts the Riccati equation into an even more famous Schrödinger 
equation. And if we move one step further and additionally rescale f(t) as: 

1 0( ) exp ( ),
2

z tf t t e V t
 


  
  
      

           , 

then we’ll end up with the Schrödinger equation that looks like this: 

 
2 12 22 .
4 2 4

V t te e
V

          


 (7) 

Hence, the entire problem reduces to finding a regular solution of (7) 
which does not vanish for any given t > 0 (so that the r. h.s of (7) remains 
well-defined), and then using it to find x: 

1 ( )0( ) .
2 2 ( )

z V ttx t e
V t

 
 

  


 (8) 
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Prior to that, however, it would be handy to replace the time variable t 
with a new independent variable te   . After that, the Schrödinger equa-
tion assumes a much simpler form: 

21 2 02
ab c

V V a V
  

     
 
 
  

, (9) 

where for the sake of simplicity we have introduced three new coefficients: 

,
2

a



  
2

1 ,b
 




   .
2

c



  

The goal now would be to study this equation and to find out a way to 
construct its solutions. But we once again remind our reader, that we also 
have an additional burden on our shoulders: respecting the physical impli-
cations of (6), by making sure that the newly discovered solutions do not 
vanish (for if they do, the density x of P– will become singular, and this defi-
nitely would not do!). How shall we approach this daunting task? 

Let us start by figuring out the general behavior of the solutions of (9) at 
the boundaries of the domain 0    . 

1. What happens with the solutions of (9) around 0  ? 
For sufficiently small   (9) turns into 

21
0.2

c
V V V

 
     

It is easy to see that this equation has two partial solution 1
cV    and 

2 ,cV    so its general solution would be just a linear combination of the two: 

V   1 2 .c cc c      By assumption, V cannot be equal to zero (so 1 0c  ), 
hence when 0   

.cV   

2. Similarly, when   , (9) reduces to 

2 0,V a V    

whose solutions have the asymptotes 

aV e  . 

Armed with this knowledge, we can utilize a new variable w(ξ), defined as: 

( ),kacV e w        1,k    

which, upon substitution into (9) reduces it to the equation for the degenerate 
hypergeometric function [15]: 

 
2 ( ) ( )

1 2 ( 2 ) ( ) 0,2
d w dw

c a k ck b w
dd

 
  


        (10) 
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where 

         2 .ka    (11) 

In order to proceed further, it is advisable to represent the solution of de-
generate hypergeometric equation as [16]: 

    2( ) exp ( ) exp ( )1 22 2
,

t
t tV t e c e w t c e w t


  
 

    
    
    

    
 (12) 

where, as before, 1c  and 2c  are arbitrary real constants, the functions w  and 

w  are defined as: 

      

( ) , 1 ,

( ) 1 , 1 ,

,tw t F e

tw t F e

   
  

    
  

  

   

 
 
 
 
 
 

 (13) 

and the function F in (13) is given by the following convergent series: 

     
2( 1)

, , 1 ...
1! ( 1) 2!

A A A
F A B

B B B

 



   


 (14) 

So, what possible benefit might we gain from (12)—(14) which we could 
not from the original Schrödinger equation (9)? Quite a lot, in fact, since now 
the problem of regularity of  x t  and  y t  reduces to a question of whether 

the series (13) has any zeroes or not. And a close look at the series  w t  re-

veals it to be alternating! Therefore, if we are to remove any possibility of V(t) 
turning to zero (henceforth producing a pole in both  x t  and  y t ), we have 

to remove the  w t  from the big picture — which we can do by setting 

1 0c  . But even that is not the end of the story. 

Since we are left with just one series  w t , we can play a little bit with 

its arguments in (14). In particular, we can turn  w t  into a finite series; all 

we have to do for that end is introduce a natural number N and choose the 
parameters A and B for  , ,F A B   to depend on N as 

 
1

A N

B N



 

  
   (15) 

Voila! We end up with an infinite of solutions  NV t , parameterized via 

the natural number N, each one of them being containing within a non-
vanishing polynomial of order N w. r. t. the variable   and having the fol-

lowing form 
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( ) exp ( , 1 , )
2 2

tt tNV t e F N N eN
   

  
      

 
 
 

, (16) 

where we have defined NN     and F(…) is the series defined by (14). 

Since we have gone this far, let us take a look at some first iterations of 
the function NV : 

 1
( ) exp 1 ,

1 2 2
t tV t e t e

   
 

     
   

     
 

   
21 2 2( ) exp 2 1 ,2 2 2

t t tV t e t e e
     
     

        
 

  
       

 

 1
( ) exp 33 2 2

,tV t e t
   


   
 
 
 

 

       
2 33 3 2 31

2 2 2
.t t te e e

    
          

    
    

 
  
 

 

As we can clearly see from these simplest cases already at the second it-
eration the solution demonstrates a very clear non-monotonic behavior. In 
particular, that very iteration,  2 ,V t  corresponds to the following magnetic 

nuclei concentrations: 

 
   

   

   

2 (1 ) (1 2 ) 1
21 2 2 4 2

21 2 3 4 2

21 2 2 4 2

m z z m z
x

m m z mz m m

z m m z m m
y

m m z mz m m

tz e 

  


    

    


    







   







, (17) 

where m


 .  

If we them use (16) to calculate the total magnetization M(t), we will get 
the following: 

      
   

2 2 23 4 2 2 3 23 13 20 49 26 20 1 2

210 1 2 2 4 2

m m z m m mz m m m m z
M

m m z mz m m

          


    

 
  

 
 

, 

which happens to fit the observational data perfectly — see Figure 3. 
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Fig. 3. Magnetic relaxation in Pt(3 nm)/Co(1.05 nm)/Ir(1.5 nm)/Co(0.7 nm)/Pt(3 nm)  

in the magnetic fields – 1360 Oe (b), – 1354 Oe (c), – 1370 Oe (d)  
at T = 100 K. The solid lines are exact solutions (16),  

the blue circles — the results of the observations (see [13]) 



Теоретическая и экспериментальная физика 

88

 
References 

 
1. Hinchey L. L., Mills D. L. Magnetic properties of superlattices formed from fer-

romagnetic and antiferromagnetic materials // Phys. Rev. B. 1986. № 33. 3329. 
2. Majkrzak C. F., Cable J. W., Kwo J. et al. Observation of a Magnetic Antiphase 

Domain Structure with Long-Range Order in a Synthetic Gd-Y Superlattice // Phys. 
Rev. Lett. 1986. № 56. 2700. 

3. Gruünberg P., Schreiber R., Pang Y. et al. Layered Magnetic Structures: Evidence 
for Antiferromagnetic Coupling of Fe Layers across Cr Interlayers // Phys. Rev. Lett. 
1986. № 57. P. 2442—2445. 

4. Salamon M. B., Shantanu S., Rhyne J. J. et al. Long-range incommensurate mag-
netic order in a Dy-Y multilayer // Phys. Rev. Lett. 1986. № 56. 259. 

5. Parkin S., Jiang X., Kaiser C. Magnetically engineered spintronic sensors and 
memory // Proceedings of the IEEE.2003. № 91. P. 661—680. 

6. Bergman A., Björn S., Hellsvik J. et al. Ultrafast switching in a synthetic antifer-
romagnetic magnetic random-access memory device // Phys. Rev. B. 2011. № 83. 
224429. 

7. Freitas P. P., Cardoso F. A., Martins V. C. et al. Spintronic platforms for biomedi-
cal applications // Lab Chip. 2012. № 12. 546. 

8. Li G., Sun S., Wilson R. J. et al. Spin valve sensors for ultrasensitive detection of 
superparamagnetic nanoparticles for biological applications // Sensors and Actua-
tors A: Phys. 2006. № 126(1). 98. 

9. Ruderman M. A., Kittel C. Indirect Exchange Coupling of Nuclear Magnetic Mo-
ments by Conduction Electrons // Physical Review. 1956. № 96. 99. 

10. Kasuya T. A Theory of Metallic Ferro- and Antiferromagnetism on Zener's 
Model // Progress of Theoretical Physics. 1956. № 16. 45. 

11. Yosida K. Magnetic Properties of Cu-Mn Alloys // Physical Review. 1957. 
№ 106 (5). 893. 

12. Fache T., Tarazona H. S., Liu J. et al. Nonmonotonic aftereffect measurements in 
perpendicular synthetic ferrimagnets // Phys. Rev. B. 2018. № 98. 064410. 

13. Morgunov R. B., Yurov A. V., Yurov V. A. et al. Oscillatory dynamics of the 
magnetic moment of a Pt/Co/Ir/Co/Pt synthetic antiferromagnet // Phys. Rev. B. 
2019. № 100. 144407. 

14. Reid W. T. Riccati Differential Equations. L., 1972. 
15. Riemann B. Beiträge zur Theorie der durch die Gauss'sche Reihe F(α,β,γ,x) 

darstellbaren Functionen // Abhandlungen der Mathematischen Classe der Königli-
chen Gesellschaft der Wissenschaften zu Göttingen. Göttingen: Verlag der Dieterich-
schen Buchhandlung. 1857. № 7. S. 3—22. 

16. Kamke E. Differentialgleichungen: Losungsmethoden und Losungen. N. Y., 
1959. 

 
Об авторах 

 
Артём Валерианович Юров — д-р физ.-мат. наук, проф., Балтийский феде-

ральный университет им. И. Канта, Россия.  
E-mail: AIUrov@kantiana.ru  
 
Валериан Артёмович Юров — канд. физ.-мат. наук, доц., Балтийский фе-

деральный университет им. И. Канта, Россия. 
E-mail: vayt37@gmail.ru 



V. A. Yurov, A. V. Yurov, R. B. Morgunov 

89

Роман Борисович Моргунов — д-р физ.-мат. наук, проф., Институт проб-
лем химической физики РАН, Россия. 

E-mail: morgunov2005@yandex.ru  
 

The authors 
 

Prof. Artyom V. Yurov, Immanuel Kant Baltic Federal University, Russia.  
E-mail: AIUrov@kantiana.ru 
 
Dr Valerian A. Yurov, Associate Professor, Immanuel Kant Baltic Federal Uni-

versity, Russia. 
E-mail: vayt37@gmail.ru 
 
Prof. Roman B. Morgunov, Institute of Problems of Chemical Physics, Russia. 
E-mail: morgunov2005@yandex.ru  
 


