Теорема 4. Δ -виртуальная аффинная нормаль $A_{n-m} = [A, \vec{e}_{\alpha}, \vec{A}_{n}]$ гиперполосы SH_{m} совпадает с нормалью Бляшке $B_{n-m}(A)$ тогда и только тогда, когда выполняются соотношения (24).

Доказательство. В самом деле, с учетом соотношений (10) имеем (26)

Из (26) и получаем условия (24).

Из теорем 3 и 4 следует

Теорема 5. Если для некоторого распределения Δ на гиперполосе SH_m справедливо одно из следующих условий: а) нормаль Трэнсона гиперполосы совпадает с нормалью Бляшке; b) Δ -виртуальная аффинная нормаль гиперполосы совпадает с нормалью Бляшке; c) Δ -виртуальная аффинная нормаль гиперполосы совпадает с нормалью Трэнсона, то справедливы и все три.

Список литературы

- 1. Лисицына И.Е. Распределения на регулярной гиперполосе аффинного пространства // Диф. геом. многообр. фигур. Калининград, 1999. №. 30. С. 43 49.
- 2. *Попов Ю.И*. Общая теория регулярных гиперполос аффинного пространства / Деп. в ВИНИТИ РАН. № 3342-В98. 105 с.
- 3. Лисицына И.Е. Нормализация Трэнсона гиперполосы H_m аффинного пространства // Диф. геом. многообр. фигур. Калининград, 1998. №. 29. С. 38 40.

E. Lisitsyna

AFFINE NORMALS OF HIPERSTRIP SH_m

We find out analytic sings and geometric interpretation of: 1) affine normals, generated by adjoint distribution Δ and Δ^* on base surface of the hyperstrip SH_m ; 2) coinsidence of constructed affine normals; 3) coinsidence of affine normal, generated by distribution Δ , with projective normal of Foss.

УДК 514.76

В.И. Макеев

(Пензенский государственный педагогический университет)

ИНФИНИТЕЗИМАЛЬНЫЕ ИЗОМЕТРИИ

ОБЩИХ МЕТРИЧЕСКИХ ПРОСТРАНСТВ ВЕКТОРНЫХ ЭЛЕМЕНТОВ С ОТНОСИТЕЛЬНОЙ МЕТРИКОЙ

Изучаются инфинитезимальные относительные изометрии веса w в общих метрических пространствах векторных элементов $g^*_{n,y}$ определенного типа. Установлены структуры всех кручений и кривизн обобщенной аффинной связности для $g^*_{n,y}$ с максимальной группой изометрий.

Пусть M — гладкое n-мерное многообразие, T(M)- его касательное расслоение.

Определение. Общим метрическим пространством векторных элементов с относительной метрикой называется пара $g^*_{n,y}=(M, g^*(x,y)), y \in T_x(M), x \in M$, где $g^*(x,y)$ - невырожденное симметрическое M-тензорное поле типа (0,2), компоненты которого относительны веса w и однородны фиксированной степени k по слоевым координатам.

Обозначим через H инфинитезимальную связность на T(M), через J-почти комплексную структуру на T(M). Обобщенной аффинной связностью Λ называется линейная связность ∇ на T(M), для которой $\nabla_x J = 0$ и $\nabla_x V \subset V(V$ -вертикальное распределение), где ∇_x – ковариантная производная для линейной связности, X – векторное поле на T(M). Предполагается, что Λ относительна, т.е. метрическая ($\Delta g^*(x,y) = 0$, Δ – ковариантный дифференциал для Λ) при 2+nw $\neq 0$ и рекуррентная ($\Delta g^*(x,y) = \mu$ $g^*(x,y)$) с 1-формой рекуррентности $\mu = \mu(x,y)$ при 2+nw=0. Будем рассматривать регулярные пространства $g^*_{n,y}$, т.е. пространства, допускающие относительную связность Λ .

Пусть D,T и $S^1 - M$ -тензорные поля смещения, h -кручение и v -кручение для H и Λ . Относительной изометрией веса w, короче w- изометрией, в $g^*_{n,y}$ с наперед заданными D, T, S^1 и 1-формой v = v(x,y) называется дифференцируемое преобразование в M, естественное продолжение которого в T(M) сохраняет $g^*(x,y)$, D, T, S^1 при $2+nw\neq 0$ и $g^*(x,y)$, D, T, S^1 , v при 2+nw=0.

При работе с относительными величинами возникают известные [1] трудности. Поэтому считаем, что компоненты $g^*_{\alpha\beta}$ метрики $g^*(x,y)$ выражаются формулой

$$g^*_{\alpha\beta}(x,y) = \varphi^{k/2} g^{w/2} g_{\alpha\beta}(x,y),$$
 (1)

где $\phi = g_{\alpha\beta} \ y^{\alpha}y^{\beta}$, $g = \det \|g_{\alpha\beta}\|$, а $g_{\alpha\beta}$ суть (0)-однородные (абсолютные) компоненты положительно определенной метрики g(x,y) общего метрического пространства $g_{n,y} = (M, g(x,y)); \ \alpha,\beta,... = 1,...,n$. В $g_{n,y}$ метрическая относи-

тельно $g_{n,y}$ обобщенная аффинная связность удовлетворяет условиям однородности и симметричности.

Пусть $F_{\rho}^{(v)} = \widetilde{\nabla}_i J_{\rho^*}^i$, $F_{\rho}^{(h)} = \widetilde{\nabla}_i J_{\rho}^i$, где J_j^i компоненты J в адаптированном к H базисе, $\widetilde{\nabla}_i$ ковариантная производная относительно римановой связности; i, j=1,...,2n; $\rho^*=n+1,...,2n$. Заметим, что при $F_{\rho}^{(v)} = F_{\rho}^{(h)} = 0$ почти эрмитово многообразие пространства $g_{n,y}$ является почти семикелеровым, т.е. почти эрмитовым, в котором $\widetilde{\nabla}_i J_j^i = 0$.

Инфинитезимальную w-изометрию, отвечающую инфинитезимальному конформному преобразованию, для которого $LF_{\rho}^{(v)}=0$ (соотв. $LF_{\rho}^{(h)}=0$) назовем инфинитезимальной (v)w-изометрией (соотв. (h)w-изометрией). Поскольку

$$LF_{\rho}^{(v)} = 2(n-1)\psi \cdot_{\rho}, \ a \ LF_{\rho}^{(h)} = -2(n-1)X_{\rho}\psi,$$

где $\psi \cdot_{\rho} = \partial \psi / \partial y^{\rho}$, $X_{\rho} = \partial / \partial x^{\rho} - \Gamma_{\rho}^{\alpha}(x,y) \partial / \partial y^{\alpha}$ (Γ_{ρ}^{α} – компоненты H), то учитывая (1), можно получить следующую теорему, где для краткости записи вынесены соотношения:

$$L D=0, L T=0, L S^{1}=0$$
 (2)

где L – производная Ли вдоль полного лифта векторного поля ξ на M.

Теорема 1. В регулярном пространстве $g^*_{n,y}$ типа (1) векторное поле ξ на M при $2+k+nw\neq 0$ определяет инфинитезимальную w-изометрию, а при 2+k+nw=0 – инфинитезимальную (v)w-изометрию (соотв. (h)w- изометрию), если и только если выполняются условия:

a)
$$Lg(x,y)=0$$
, (2), $2+nw\neq 0$, $2+k+nw\neq 0$; (3)

6)
$$Lg(x,y)=0$$
, (2), $Lv=0$, $2+nw=0$, $k\neq 0$; (4)

B)
$$Lg(x,y)=2 \psi g(x,y), \ \psi_{\rho}=0, \ (2), \ 2+k+nw=0$$
 (5a)

$$(Lg(x,y)=2 \psi g(x,y), X_{\rho} \psi=0, (2), 2+k+nw=0),$$
 (56)

 $r\partial e \psi = \psi(x,y) - c$ калярная функция.

Если условия интегрируемости системы уравнений (3) (соотв. (4), (5а или 5б)) выполняются тождественно, то $g^*_{n,y}$ допускает группу *w*-изометрий G_r максимальной размерности r=n(n+1)/2 (соотв. r=n(n+1)/2; r=(n+1)(n+2)/2, $n\geq 3$). Предполагая это, из соотношений интегрируемости можно установить определенные структуры всех *M*-тензорных полей кручений T, S^1 , C, R^1 , P^1 и кривизн R^2 , P^2 , S^2 связности Λ в каждом из трех случаев. При этом считаем, что Λ параллельная в случаях (3) и (4), т.е.

$$\Delta^{(h)}R^2=0$$
, $\Delta T=0$, $\Delta S^1=0$,

где $\Delta^{(h)}$ – (h)-ковариантная производная для Λ . Получается, в частности, следующий результат, где $R_{\beta}{}^{\alpha}{}_{\mu\rho}$, $S_{\beta}{}^{\alpha}{}_{\mu\rho}$, $T_{\beta}{}^{\alpha}{}_{\mu}$ и $S_{\beta}{}^{\alpha}{}_{\mu}$ – компоненты R^2 , S^2 ,Т и S^1 соответственно.

Случай (3):

$$R_{\beta\alpha\mu\rho}=0, (R_{\beta\alpha\mu\rho}=g^*_{\alpha\sigma} R_{\beta}^{\mu\rho}), \tag{6}$$

$$R_{\beta\alpha\mu\rho} = \Phi B(g^*_{\beta\mu} g^*_{\alpha\rho} - g^*_{\beta\rho} g^*_{\alpha\mu}), \tag{7}$$

где В – некоторая (≠0) постоянная, а

$$\Phi = \phi^{*-k/2+k+nw} g^{*-w/2+k+nw} (\phi^* = g^*_{\alpha\beta} y^{\alpha} y^{\beta}, g^* = \det ||g^*_{\alpha\beta}||);$$

$$R_{\beta\alpha\mu\rho} = g^*_{\alpha\mu} \Pi_{\beta\rho} - g^*_{\alpha\rho} \Pi_{\beta\mu} + g^*_{\beta\rho} \Pi_{\alpha\mu} - g^*_{\beta\mu} \Pi_{\alpha\rho},$$

$$\Pi_{\beta\mu} = \Phi \cdot (-\frac{1}{2} \Omega g^*_{\beta\mu} + \frac{1}{\varpi^*} Q y^*_{\beta} y^*_{\mu}),$$
(8)

где $y^*_{\beta} = g^*_{\beta\sigma} y^{\sigma}$ и для постоянных Ω , Q случай Ω =0, Q≠0 отсутствует;

$$S_{\beta\alpha\mu\rho} = \frac{A}{\varphi^*} (h_{\beta\mu} h_{\alpha\rho} - h_{\beta\rho} h_{\alpha\mu}) (h_{\beta\mu} = g^*_{\beta\mu} - \frac{1}{\varphi^*} y^*_{\beta} y^*_{\mu}, A = const).$$
 (9)

Теорема 2. Пусть регулярное пространство $g^*_{n,y}$ типа (1) обладает при $2+nw\not=0$, $2+k+nw\not=0$ группой w-изометрий $G_{n(n+1)/2}$ и связность Λ параллельная. Тогда T=0, $S^1=0$, а компоненты кривизн R^2 , S^2 можно выразить формулами (6)-(9).

Пространство $g^*_{n,y}$, для которого $R^2 = 0$ (R^2 – аналогично (7), (8)) назовем пространством постоянной нулевой кривизны (ненулевой кривизны, субпроективным многообразием Кагана [2]). Таким образом, при условиях теоремы 2 пространство $g^*_{n,y}$ так называемой непостоянной кривизны является субпроективным многообразием Кагана основного случая.

Случай (4):

T=0 (n>3,
$$a^2+(b+n)^2\neq 0$$
; a,b=const), (10)

$$T_{\beta \mu}^{\alpha} = \delta_{\beta}^{\alpha} T_{\mu} - \delta_{\mu}^{\alpha} T_{\beta}$$
 (n>4, a=0, b+n=0) (11)

$$(T_{\mu} = \frac{\delta_1 - \delta_2}{(n-1)\sqrt{\varphi}} y_{\mu}, y_{\mu} = g_{\mu \sigma} y^{\sigma}; \delta_1, \delta_2 = \text{const}),$$

$$S^{1}=0 (n>3, a^{2}+\delta_{2}^{2}+(b+n)^{2}\neq 0),$$
 (12)

$$S_{\beta \mu}^{\alpha} = \delta_{\beta}^{\alpha} S_{\mu} - \delta_{\mu}^{\alpha} S_{\beta} (n>4, a=0, b+n=0, \delta_2=0)$$
 (13)

$$(S_{\mu} = \frac{t}{(n-1)\omega} y_{\mu}, t = \text{const}),$$

$$S_{\beta\alpha\mu\rho} = \frac{\mathcal{E}}{\sigma^*} (h_{\beta\mu} h_{\alpha\rho} - h_{\beta\rho} h_{\alpha\mu}) \quad (\mathcal{E} = \text{const}). \tag{14}$$

Теорема 3. Если регулярное пространство $g^*_{n,y}$ типа (1) при 2+nw=0 и $k\neq 0$ допускает группу w-изометрий $G_{n(n+1/2)}$ и связность Λ параллельная, то

оно является постоянной нулевой или ненулевой кривизны, а компоненты T, S^1 и S^2 можно выразить формулами (10)-(14).

Случай (5а, 5б):

$$S_{\beta \mu}^{\alpha} = \delta_{\beta}^{\alpha} S_{\mu} - \delta_{\mu}^{\alpha} S_{\beta} (S_{\mu} = \frac{t}{(n-1)\varphi} Y_{\mu}); \qquad (15)$$

$$S_{\beta\alpha\mu\rho}$$
 – вида (9), но $A = \frac{(n-1)^2 - t^2}{(n-1)^2}$. (16)

Теорема 4. Если регулярное пространство $g^*_{n,y}$ типа (1) при 2+k+nw=0 допускает группу (v)w-изометрий (или (h)w-изометрий) $G_{(n+1)(n+2)/2}$, $n \ge 3$, то T=0, $R^1=0$, $P^1=0$, $R^2=0$, $P^2=0$, a S^1 и S^2 обладают компонентами вида (15),(16).

Список литературы

- 1. Thomas T.Y. The differential invariants of generalized spaces. Cambridge, 1934. 243 p.
- 2. *Кручкович Г.И*. О пространствах В.Ф.Кагана // Каган В.Ф. Субпроективные пространства. М. Физматгиз, 1961. С. 163-195.

V.I. Makeev

INFINITESIMAL ISOMETRICS OF GENERAL METRIC SPACES OF VECTOR ELEMENTS WITH THE RELATIVE METRIC

We study infinitesimal relative isometrics of weight w in general metric paces of the vector elements $g^*_{n,y}$ of the certain type. The structure of the all torsion's and curvatures of the generalized affine connection for $g^*_{n,y}$ with maximum group of the isometrics has been established.

УДК 514.7

Т.Ю. Максакова

(Балтийский военно-морской институт)

ДВОЙСТВЕННЫЕ НОРМАЛЬНЫЕ СВЯЗНОСТИ НА ВЫРОЖДЕННОЙ ГИПЕРПОЛОСЕ

Рассматриваются двойственные нормальные связности на центрированной тангенциально вырожденной гиперполосе CH^r_m проективного пространства P_n . Показано, что