

УДК 621.373.52

М.П. Савченко, О.В. Старовойтова

СВОЙСТВА ПЕРЕСТРАИВАЕМОГО ПО ЧАСТОТЕ АВТОГЕНЕРАТОРА ПРИ ЧАСТИЧНОМ ВКЛЮЧЕНИИ ТРАНЗИСТОРА В КОНТУР

С помощью метода, основанного на представлении биполярного транзистора эквивалентным активным двухполюсником с отрицательной проводимостью, рассмотрены свойства перестраиваемого по частоте автогенератора с контуром между коллектором и базой при частичном включении транзистора в контур.

The properties of a tunable frequency oscillator with a circuit between the collector and the base of the partial inclusion of the transistor in the circuit were studied using a method based on the presentation of bipolar transistor equivalent active two port circuit with negative conductivity.

Ключевые слова: перестраиваемый по частоте автогенератор, двухполюсник с отрицательной проводимостью.

Key words: tunable frequency oscillator, two port circuit with negative conductivity.

В инфокоммуникационных системах широко применяются перестраиваемые автогенераторы (АГ) на биполярных транзисторах. На рисунке 1 приведена обобщенная высокочастотная схема АГ с колебательной системой КС между коллектором и базой и конденсаторами обратной связи C_1 , C_2 . В работах [1-3] предложена модель такого АГ в виде пассивного и активного двухполюсников, соединенных параллельно. Эквивалентная схема автогенератора по высокой частоте в случае частичного включения транзистора в контур приведена на рисунке 2. На рисунке приняты обозначения: $\dot{Y}_a(\omega_0, U)$ - комплексная проводимость транзисторно-емкостного нелинейного активного (ТЕА) двухполюсника [2], включающего в себя транзистор VT и конденсаторы C_1 , C_2 . Остальные элементы схемы описаны в таблице.

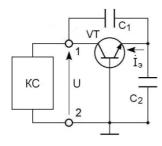


Рис. 1. Обобщенная высокочастотная схема АГ

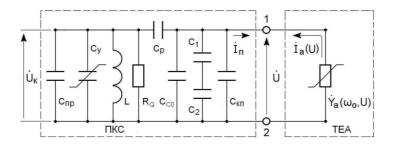


Рис. 2. Эквивалентная высокочастотная схема $A\Gamma$ при частичном включении транзистора в контур

Обозначения на эквивалентной схеме автогенератора

Обозначение	Характеристики пассивного двухполюсника
L, C _y	Индуктивность и перестраиваемая емкость
R_Q	Эквивалентное сопротивление потерь в контуре
$C_{\mathit{\PiP}}$	Паразитная емкость монтажа
C_P	Разделительная емкость
C_{C0}	Емкость в контуре
$C_{\scriptscriptstyle K\!\Pi}$	Пассивная составляющая емкости коллектора $C_{\scriptscriptstyle K}$
$\dot{Y}_{\Pi}(j\Delta\omega)$	Проводимость полной колебательной системы (ПКС) между точками 1—2 подключения к транзистору при малых отстройках $\Delta\omega$ от частоты ω_0

В работах [1; 3] комплексные проводимости $\dot{Y}_a\left(\omega_0,\theta\right)$ и $\dot{Y}_{II}(j\Delta\omega)$ представлены выражениями

$$\dot{Y}_{\Pi}(j\Delta\omega) = G_{\Pi}(\Delta\omega) + jB_{\Pi}(\Delta\omega) , \qquad (1)$$

$$\dot{Y}_{a}(\omega_{0},\theta) = G_{a}(\omega_{0},\theta) + jB_{a}(\omega_{0},\theta). \tag{2}$$

Стационарный режим колебаний в AГ существует при соблюдении условий

$$G_{\Pi}(\Delta\omega) + G_{\alpha} = 0 \; ; \; B_{\Pi}(\Delta\omega) + B_{\alpha} = 0 \; . \tag{3}$$

Стационарный режим будет устойчивым, если выполняются следующие условия [3]:

$$\partial (-G_a)/\partial U \triangleleft 0$$
, $\partial (-B_{II})/\partial \omega \triangleleft 0$. (4)

Уравнения (3) удобно решать методом годографов. Точка пересечения годографов и есть решение для этих уравнений. Воспользовавшись выражениями для расчета комплексных проводимостей $\dot{Y}_a\left(\omega_0,\theta\right)$, $\dot{Y}_\Pi(j\Delta\omega)$ [1], получим проводимость ПКС на собственной частоте ω_0 $Y_{\rm ex}=1/p_{cp}^2R_Q$, где $p_{cp}=C_p/(C_p+C_c)$. Постоянная времени ПКС $T_Q=2Q_\kappa$ / ω_0 . В модели АГ [3] для оценки степени включения ТЕА-двухполюсника в контур введен обобщенный параметр $a\approx p_{cp}p_{\kappa p}Q_\kappa$, где $p_{\kappa p}=C_p/(C_p+C_v+C_{np})$. Макси-

83

мальное значение $a \approx Q_{\kappa}$ достигается при полном включении ТЕА в контур. В этом случае, как видно из рисунке 2, ПКС трансформируется в одиночный параллельный контур. При $C_p=0$ параметр a обращается в 0, и ПКС со стороны выводов 1-2 вырождается в емкость C_{C} . Автоколебания в такой системе невозможны. Практика показывает, что минимальное значение параметра можно принять a=1. При полном включении ТЕА в контур $1/a=Q_{\kappa}^{-1}\approx 0$ при ослаблении включения $1/a\to 1$.

На рисунке 3 построены нормированные к $Y_{\rm ex}$ годографы ПКС (1) для значений параметра 1/a=0, 0,1, 0,2, 0,3, 0,5 и 1,0. В расчетах ϖ_0 и $Q_{\rm k}$ не менялись. Векторы $\overline{\varpi}$ на годографах указывают направление роста частоты. Направление обхода на линиях задано вектором $\overline{\eta}$ по часовой стрелке. Угол α пересечения векторов $\overline{\eta}$ и $\overline{\omega}$ отсчитывается от $\overline{\eta}$ по часовой стрелке до $\overline{\omega}$.

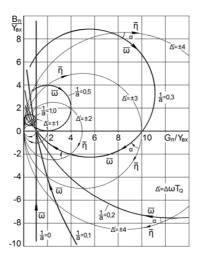


Рис. 3. Нормированные к Y_{sx} годографы ПКС

Если $\alpha < \pi$, то $\Delta \omega T_{\mathcal{Q}} < 0$, если $\alpha > \pi$, то $\Delta \omega T_{\mathcal{Q}} > 0$, при $\alpha = \pi \Delta \omega T_{\mathcal{Q}} = 0$. Из рисунка видно, что, варьируя коэффициент включения транзистора в контур, можно существенно изменять годографы ПКС, а следовательно, характеристики автогенератора.

На рисунках 4—6 приведены примеры графического решения уравнений (3) автогенератора на транзисторе 2Т371 [4]. Значения вещественной и мнимой составляющих представлены на комплексной плоскости в миллисименсах. Линия активного двухполюсника промаркирована значениями угла отсечки. Годографы ПКС построены с отрицательным знаком. Вектора частоты и напряжения направлены в сторону роста частоты и амплитуды колебаний. На рисунке 4 видно, что при малых и больших значениях 1/а возможно двойное пересечение годографов. Условия устойчивости стационарного режима (4) превращаются на

комплексной плоскости в условие $0^\circ < \gamma < 180^\circ$, где γ — угол пересечения годографов, отсчитываемый от вектора \overline{U} по часовой стрелке до вектора $\overline{\omega}$. Стационарный режим устойчив в точках A, B, C, D. В точках A', B', D' нарушены условия (4), здесь режим самовозбуждения жесткий. Для точки A $\Delta \omega T_Q(A) = -0.43$, для точки B $\Delta \omega T_Q(B) = -0.63$, для точки C $\Delta \omega T_Q(C) = -0.84$, то есть частота колебаний автогенератора $\omega^0 = \omega_0 + \Delta \omega^0$ уменьшается.

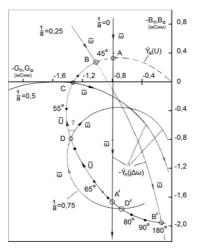


Рис. 4. Графическое решение уравнений (3) автогенератора на транзисторе 2Т371

Угол отсечки в стационарном режиме θ^0 при переходе от точки A к точке D монотонно растет, значит, амплитуда колебаний падает [2]. Следовательно, c увеличением 1/a частота и амплитуда колебаний $A\Gamma$ уменьшаются. В неустойчивых точках $\Delta \omega T_O(A') = +2,10$, $\Delta \omega T_O(B') = +6,17$.

На рисунке 5 приведены графические решения уравнений АГ при перестройке по частоте путем изменения емкости C_{v} (рис. 2). Ток транзистора фиксирован. Значения емкости C_{ν} меняются от 0 п Φ (линии 1) до 28 пФ (линии 5) с шагом 7 пФ. Годографы ПКС (сплошные линии) рассматривались на интервале $\varDelta \omega T_{\scriptscriptstyle Q}$ от -1,2 до 4, годографы ТЕА (пунктир) — на интервале изменения θ от 180° до 50°. Из рисунке 5 видно, что с ростом C_{v} (уменьшением ω^{0}) годографы активного двухполюсника смещаются вправо и сильнее закручиваются. Годографы ПКС при этом искривляются и наклоняются влево, а параметр 1/a растет от 0,194 для линии 1 до 0,857 для линии 5. На интервале значений от 21 до 28 пФ годографы пересекаются дважды. Здесь самовозбуждение жесткое, так как в точках с большими значениями θ^0 угол $\gamma > 180^\circ$. Для емкости 28 пФ годографы ТЕА и ПКС только соприкасаются. При дальнейшем увеличении емкости С, годографы расходятся, пересечения нет, колебания в АГ невозможны. Для устранения жесткого режима самовозбуждения и расширения пределов перестройки в область нижних частот необходимо сместить годографы ПКС вправо, то есть уве-

личить параметр 1/a. Это можно сделать, например, путем уменьшения $C_{\rm C0}$. Проверим данное предположение.

На рисунке 6 приведены графические решения уравнений АГ для нескольких значений $C_{\rm C0}$ при $C_{\rm y}$ = 5,6 пФ. Условия расчета аналогичны принятым при создании рисунка 5. Из этого следует вывод, что годографы ПКС при уменьшении $C_{\rm C0}$ сдвигаются вправо, при этом годографы ТЕА остаются практически в неизменном виде. Таким образом, при уменьшении $C_{\rm C0}$, то есть при возрастании параметра 1/a пределы перестройки АГ расширяются, а при увеличении $C_{\rm C0}$ — сужаются.

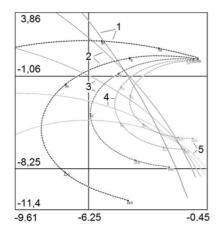


Рис. 5. Графические решения уравнений АГ при перестройке по частоте путем изменения управляющей емкости C_y

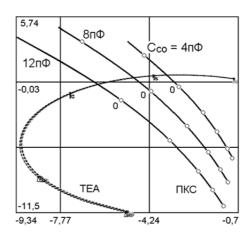


Рис. 6. Графические решения уравнений $A\Gamma$ для значений C_{C0} 4,3 пФ, 8,2 пФ и 12 пФ при C_{v} =5,6 пФ

Итак, при частичном включении транзистора в контур увеличение параметра 1/a вызывает снижение частоты и амплитуды колебаний АГ, при этом пределы перестройки частоты расширяются в сторону нижних частот. В широкодиапазонных автогенераторах для малых и больших значений параметра 1/a возможны жесткие режимы самовозбуждения. Таким образом, показано, что выбранный метод анализа автогенератора позволяет наглядно оценивать свойства автогенератора и облегчает выбор элементов схемы для получения заданных характеристик АГ.

Список литературы

- 1. Савченко М. П., Старовойтова О. В. Метод анализа высокочастотного транзисторного автогенератора // Вестник Балтийского федерального университета им. И. Канта. 2012. Вып. 4. С. 100-107.
- 2. *Савченко М.П.* Активный нелинейный двухполюсник с отрицательным сопротивлением на основе биполярного транзистора // Радиотехника. 2008. № 2. С. 74 84.

- 3. Савченко М.П. Стационарный режим и флуктуации в автогенераторе на транзисторно-емкостном двухполюснике с отрицательным сопротивлением // Известия вузов России. Радиоэлектроника. 2009. Вып. 5. С. 21-31.
- 4. *Полупроводниковые* приборы. Транзисторы малой мощности : справочник / под ред. А. В. Голомедова. М., 1994.

Об авторах

Михаил Петрович Савченко — канд. техн. наук, доц., Балтийский федеральный университет им. И. Канта, Калининград.

E-mail: savchenkomp@mail.ru

Ольга Владимировна Старовойтова — ст. преп., Балтийский федеральный университет им. И. Канта, Калининград.

E-mail: savchenkomp@mail.ru

About the authors

Mikhail Savchenko — PhD, Ass. Prof., I. Kant Baltic Federal University, Kaliningrad.

E-mail: savchenkomp@mail.ru

Olga Starovoitova – Ass. Prof., I. Kant Baltic Federal University, Kaliningrad.

E-mail: savchenkomp@mail.ru

87