connection to be vanishing. There are discribed parallel displacements of Bortolotti’s
hyperplane in the connections of the both types, which are degenerate.
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Projective mappings have been extensively studied in the literature. The theory of
projective submersions is less investigated (see for example [1] - [4]). This paper is
devoted to study of the global theory and the local theory of projective submersions. In
particular, we generalize two results from [2] and [4] to a noncompact Riemannian
manifold.

1. Introduction

A submersion of an m-dimensional pseudo-Riemannian manifold ( M, g ) onto an
n-dimensional ( m > n ) pseudo-Riemannian manifold ( N, g’ ) is a C* - surjective
map ©: (M, g)— (N, g ) such that at each point x € M the induced tangential map
Ty - TXM - TR(X)N is of maximal rank. The inverse image ="' (y) of a point

y € N is said to be a fibre of ©. For a submersion : (M, g) — (N, g’ ), the implicit
function theorem tells us that the fibres of w are closed submanifolds of ( M, g ) and at
each pointy of (N, g’) dim n7'(y)=m-n.

Let g¥ denotes the metric of =~'(y ) induced by g. If det (g ) #0 then n~'(y) is
called (see[5]) a nondegenerate submanifold of ( M, g ). Fibres of = which we
discuss in this paper are assumed to be nondegenerate. Then a foliation V of (M, g)
isgivenby V={ n'(y) |y € N}, which determines the almost product structure

TM =kern,® kern;
where ker , will always be integrable and will be called the vertical distribution and
ker ;7 will be called the horizontal distribution.

Considera curvey:J—> (M, g) in(M,qg), where Jis being an interval, and
denotet (y) = moy: J— (N,g" ) the image of y by =. Then for each a curve y
which is tangent to the distribution ker . we have wt (y) to be apointin (N, g').

The curve v is called geodesic if its tangent vector field y is parallel, i. e.
V .y =0 where V denotes the Levi-Civita connection. That it follows (see [6])

Y
that a geodesic is either regular at every point, or its image degenerates to a point. A
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pregeodesic is a curve y , which becomes a geodesic after a change of parameter ( see
[5]). A parameter making the curve y geodesic is called affine.

We assume that an arbitrary pregeodesic in ( M, g ) is mapped by = into a prege-
odesic in ( M, g). Such a submersion = is said to be projective (cf.[7]). Note also
that a pregeodesic y which is tangent to the distribution ker m. map to a point of the
manifold (N, g’ ). This does not contradict the definition of a projective submersion.

Following [ 8 ], we call a manifold ( M, g ) a twisted - product M, x . M, if

(M,g)=(M,x M,, g +fg,) for pseudo-Riemannian manifolds (M,, g,), (M,,
g,) and a positive function f: M, x M,— (0, o). If x, and =, are the canonical pro-
jections onto the factor (M,, g,) and (M,, g,), then for any point y € M, the fibre
n,” (y) is a totally geodesic submanifold of ( M, g ), while for any point z € M, the

fibore =,7'(z) is totally umbilical submanifold of ( M, g ). The following theorem
holds.

THEOREM 1. Let 7: (M, g) - (N, g’) be a projective submersion of a simply
connected and complete pseudo-Riemannian manifold (M, g) onto a pseudo-Rieman-
nian manifold ( N, g”) of smaller dimension. If each fibre of 7 is a nondegenerate
submanifold of (M, g ) then (M, g ) is isometric to a twisted product M; x . M2 such

that the integrable manifolds of ker 7. and ker z+* correspond to the canonical folia-
tions of the product M1 x M.

We call a manifold ( M, g ) a locally twisted product ( see [ 9 ]) if for any point
X € M there exists a neighbourhood U = U: x Uz with a local coordinate system
X1, .., X", X" x™ such that the metric form of ( M, g ) can be written as

ds? = ga (X% .., x")dx® ®@dxP + f(x, ..., X™) gop (X", ..., X™) dx* ® dxP
fora,b=1,..,n; o, = n+1 .., m and a certain positive function f. In this case
we have proved ( see [ 2 ] ) that the canonical projection x,: U1 x U — U, isa
projective submersion.

Let m:(M,g)— (N,Qg") bea projective submersion from a complete Riemanni-
an manifold ( M, g ) of a nonnegative sectional curvature K onto a Riemannian mani-
fold (N, g’ ). In this case we have proved (see[2]and [4]) that (M, g) islocally a
Riemannian product, that is, the orthogonal distribution ker =, is also integrable with
totally geodesic leaves and ( M, g ) is locally a Riemannian product of the leaves of
ker =, and kerm;.

Now we assume that ( M, g ) is not a complete manifold and present the follow-
ing local

THEOREM 2. Let 7: (M, g) — (N, g’) be a projective submersion of a Rie-
mannian manifold (M, g) of nonnegative sectional curvature onto a Riemannian
manifold ( N, g”) of smaller dimension. Then the leaves of ker z.are totally geodes-
ic, the orthogonal distribution ker 7. is also integrable with totally geodesic leaves
and (M, g) is locally a Riemannian product of the leaves of ker 7. and ker 7.

A Riemannian manifold is called a manifold of quasi-positive sectional curvature
if its sectional curvatures are everywhere nonnegative ( resp. positive semi-definite,

70



etc.) and positive  ( resp. positive definite, etc. ) for all 2-planes at one point. Quasi-
negativity is dually defined ( see for example [ 10 ]).

In [ 3 ] we have proved that a compact oriented Riemannian manifold of quasi-
negative sectional curvature admits no projective submersions onto Riemannian mani-
folds of smaller dimension. Finally we shall prove

THEOREM 3. A Riemannian manifold ( M, g ) of quasi-positive sectional curva-
ture admits no projective submersions onto Riemannian manifolds of smaller dimen-
sion.

Theorem 3 is a purelly local result.

2. Notes on the Proof of Theorem 1

Let =:(M,g)— (N, g') be asubmersion from a pseudo-Riemannian manifold
(M, g ) onto a pseudo-Riemannian manifold ( N, g’ ) of smaller dimension. Now we
assume that all fibres of = are nondegenerate submanifolds of ( M, g ). In this case the
foliation V ={ n7'(y) |y e N } corresponds a pair of mutually complementary orthog-
onal distributions ker rt. and kern; .

If m is a projective submersion, then there exists a smooth 1-form 6 on ( M, g )
such that for any two vector fields X,Y € C*TM we have (see[11])

ViemY - mV Y = 0(X)mY + O(Y)mX (2.1)

where V' is the Levi-Civita connection of (N, g’ ) and =,Y is differentiated as a vec-
tor field along w. Then, by (2.1),if XY eC”(kern ,), we get =, vXY = 0. In this

case we have Q = 0 for the second fundamental form Q of V. Hence V is a totally geo-
desic foliation of (M, g).
On the other hand, if we set X,Y eC”(kern}) and Ze C”(kern ,) in (2.1), we

get
.V, X=-0(Z)m. X (2.2)

Then g( VXY,Z) = —g(Y,VXZ) =0(Z)g(X,Y) and by symmetry g([ X, Y ],Z)=0s0

that ker rt- is integrable. Moreover g( Q( X, Y ), Z)=0(Z) g( X, Y ). Hence kerr;
defines a totally umbilical foliation H.

Let ( M, g ) be a simply connected pseudo-Riemannian manifold with two com-
plementary orthogonal foliations V and H such that the leaves of V are totally geodes-
ic and geodesically complete and the leaves of H are totally umbilic. In this case R.
Ponge and H. Reckziegel proved (see [8]) that ( M, g ) is isometric to a twisted
product M: x . M2 such that H and V correspond to the cannonical foliations of the
product M1 x M.

If we suppose the geodesic completeness of ( M, g ), then the leaves of V are geo-
desically complete automatically. Hence the result of R. Ponge and H. Reckziegel im-
plies Theorem 1 immediately.
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REMARK . Let (M, g) be a Riemannian manifoldand =: (M, g) — (N, g’ ) be
a projective submersion. In this case the following condition is unnecessary in the text
of Theorem 1: fibres of « are nondegenerate.
3. Proofs of Theorem 2 and Theorem 3

Letm: (M, g)— (N, g’ ) be a projective submersion of an m-dimensional Rie-
mannian manifold ( M, g ) onto an n-dimensional Riemannian manifold ( N, g’ ) and
m > n. Then the foliation V defined by ker = is totally geodesic, the orthogonal distri-
bution ker w. is integrable and defines a totally umbilical foliation H.

The mean curvature vector &" of H defined by g(&,Z)=0(Z) for ZeC”(kern})
is tangent to V. Then we may consider its divergence divv £" on V. By Corollary 2.9
of [ 12 ] we have

4 SK(X,.X,) =~ |[VP[2+2div,&", (3.1)

a=l i=n+l 2
where { X,,..., X, }and { X,,,, ..., X, } are local orthonormal frams of ker =, and
ker 7. respectively, K( X_,,X,) is the sectional curvature of the plane p = span {
X,,X.} and P is the fundamental tensor of the almost product structure TM = ker 7t ®
ker mt.t.
It is know that =n~'(y) is a closed submanifold of ( M, g). Applying to ( 3.1) the
Green’s Theorem we get

s @ 1 v
Jnl(y){ZZK(Xa,XngIVPI m=0, (32)

a=] i=n+l

where 1 is the volume form on =~'(y) determined by the metric tensor field g*.

REMARK . In the case when n7'(y) is disconnected, we can apply the Green’s
Theorem to each its connected component.

We assume that K(X,,X;) 20 for1<a<nandn+1<i<m. Thenusing (3.2)
we obtain K(X,,X,) =0and V P =0 at each poin of n'(y).

The foliation V={n 1 (y) |y € N } is a decomposition of ( M, g ) into a union
of disjoint closed submanifolds M = |J='(y), so that V P = 0 at each point of (M, g).

yeN

Hence ( see for example [ 9 ]) the orthogonal distributions ker =, and ker =, are inte-
grable with totally geodesic leaves. Consequently, ( M, g ) is locally a Riemannian
product of leaves of ker n, and kerx; .

Assume now that K > 0 and K > 0 for some point x of ( M, g ) where xen 'n(x) .

In this case from ( 3.2 ) is conluded, that the submersion ©: (M, g) — (N, g’ ) can
not be projective.
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CE.CrenmanoB UHN. IlpiTaHOK
TPU TEOPEMBI O ITPOEKTHUBHBIX CYBMEPCHUAX
[TpoexTuBHBIE OTOOPAXKEHUS MTUPOKO U3YUCHBI B IUTEpaType. Teopus MpOeKTHB-
HBIX cyOMepcuii MeHee uccienoBana. Hacrosmias pabora mocBsieHa U3y4eHHIO TI10-

OaJbHON M JIOKAJBHON TEOpU MPOEKTUBHBIX cyOMepcuil. B wactHocTH, 00001mat0TCs
2 pe3ynpTaTa B cy4yae HEKOMIAKTHOTO PUMAaHOBAa MHOT000pa3usi.

VJIK 514.75

CYKEHUSI TIPOCTPAHCTB ITPOEKTUBHOM CBSI3HOCTH,
UHJIYIIUPYEMBIX HA OCHAIIIEHHOHM I'MITEPIIOJIOCE

AB.CtonsipoB

(Yysawckuti cocyoapcmeentolii neda202uteckutll YHUueepCumen)
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