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connection to be vanishing. There are discribed parallel displacements of Bortolottis 

hyperplane in the connections of the both types, which are degenerate. 
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Projective mappings have been extensively studied in the literature. The theory of 

projective submersions is less investigated (see for example [1] - [4]). This paper is 

devoted to study of the global theory and the local theory of projective submersions. In 

particular,  we generalize two results from [2] and [4] to a noncompact Riemannian 

manifold. 
 

1.  Introduction 
 

A submersion of an m-dimensional pseudo-Riemannian manifold ( M, g ) onto an 

n-dimensional ( m > n ) pseudo-Riemannian manifold ( N, g )  is a C - surjective 

map :  ( M, g )  ( N, g )  such that at each point x  M the induced tangential map 

x : T
x

M   T
x

N
( )

 is of maximal rank. The inverse image  1 ( y )  of a point  

y  N  is said to be a fibre of . For a submersion : ( M, g )  ( N, g ), the implicit 

function theorem tells us that the fibres of   are closed submanifolds of ( M, g ) and at 

each point y of ( N, g )  dim  1 ( y ) = m  n. 

Let gv denotes the metric of   1 ( y ) induced by g. If det ( gv )  0  then  1 ( y ) is 

called  ( see [ 5 ] ) a  nondegenerate submanifold of ( M, g ).  Fibres of  which we 

discuss in this paper are assumed to be nondegenerate. Then a foliation  V  of ( M, g )  

is given by  V = {  1 ( y )  y  N }, which determines the almost product structure   

TM = ker  ker  

    

where ker will always be integrable and will be called the vertical distribution and  

ker  

  will be called the horizontal distribution. 

Consider a  curve  : J  ( M, g )  in ( M, g ), where  J is being an interval, and 

denote  (  )  =   o  :  J  ( N, g ) the image of  by .  Then for each a curve   

which is tangent to the distribution ker   we have   (  )  to be a point in ( N, g ). 

The curve  is called geodesic  if its tangent vector field 


  is parallel, i. e. 






  = 0 where   denotes the Levi-Civita connection. That it  follows ( see [ 6 ] )  

that a geodesic is either regular at every point, or its image degenerates to a point. A  
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pregeodesic  is a curve  , which becomes a geodesic after a change of parameter ( see 

[ 5 ] ). A parameter making the curve   geodesic is called  affine. 

We assume that an arbitrary pregeodesic in ( M, g )  is mapped by   into a prege-

odesic in ( M, g ).  Such a submersion    is said to be  projective  ( cf. [ 7 ] ). Note also 

that a pregeodesic   which is tangent to the distribution  ker   map to a point of the  

manifold (N, g ). This does not contradict the definition of a projective submersion. 

Following [ 8 ], we call a manifold ( M, g ) a  twisted - product  M1   f M 2  if  

( M, g ) = ( M1 M 2 , g1  + f g2 )  for pseudo-Riemannian manifolds (M1 , g1 ),  (M 2 , 

g2 ) and a positive function  f: M1 M 2  ( 0,  ). If 1  and 2  are the canonical pro-

jections onto the factor   (M1 , g1 )  and  (M 2 , g2 ), then for any point  y  M 2  the fibre 

2

1
(y)  is a totally geodesic submanifold  of ( M, g ), while for any point z  M1  the 

fibre  1

1
( z )  is totally umbilical submanifold of ( M, g ). The following theorem 

holds. 

THEOREM 1. Let  : ( M, g )  ( N, g )  be a projective submersion of a simply 

connected and complete pseudo-Riemannian manifold (M, g) onto a pseudo-Rieman-

nian manifold ( N, g ) of smaller dimension. If each fibre of  is a nondegenerate 

submanifold of ( M, g ) then ( M, g ) is  isometric to a  twisted product M1  f M2  such 

that the integrable manifolds of  ker   and ker   correspond to the canonical folia-

tions of the product  M1  M2. 

We call a manifold ( M, g ) a locally twisted product ( see [ 9 ] ) if for any point 

x  M there exists a neighbourhood  U  =  U1   U2  with a local coordinate system  

x1, ..., xn, xn+1, ..., xm   such that the metric form of ( M, g ) can be written as 

ds2   =   gab ( x1, ..., xn ) dxa   dxb   +  f ( x1, ..., xm )  g ( xn+1, ..., xm )  dx   dx   

for a, b =  1, ..., n;  ,   =  n + 1, ..., m  and a certain positive function f.   In this case 

we have proved ( see [ 2 ] ) that the canonical projection 1 :  U1    U2    U2   is a 

projective submersion. 

Let   : ( M, g )  ( N, g ) be a projective submersion from a complete Riemanni-

an manifold ( M, g )  of a nonnegative sectional curvature K onto a Riemannian mani-

fold ( N, g ). In this case we have proved ( see [ 2 ] and [4 ] )  that ( M, g )  is locally a 

Riemannian product, that is, the orthogonal distribution ker  

  is also integrable with 

totally geodesic leaves and ( M, g ) is locally a Riemannian product of the leaves of  

ker   and    ker  

 . 

Now we assume that ( M, g )  is not a complete manifold  and present the follow-

ing local 

THEOREM 2. Let   : ( M, g )  ( N, g ) be a projective submersion of a Rie-

mannian manifold      ( M, g ) of  nonnegative sectional curvature onto a Riemannian 

manifold ( N, g ) of smaller dimension.  Then  the leaves of  ker  are totally geodes-

ic,  the orthogonal distribution ker  is also integrable with totally geodesic leaves 

and ( M, g ) is locally a Riemannian product of the leaves of  ker   and ker . 

A Riemannian manifold is called a manifold of quasi-positive sectional curvature 

if its sectional curvatures are everywhere nonnegative ( resp. positive semi-definite, 
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etc.) and positive      ( resp. positive definite, etc. ) for all 2-planes at one point. Quasi-

negativity is dually defined ( see for example [ 10 ] ). 

In [ 3 ] we have proved that a compact oriented Riemannian manifold of quasi-

negative sectional curvature admits no projective submersions onto Riemannian mani-

folds of smaller dimension. Finally we shall prove 

THEOREM 3. A Riemannian manifold ( M, g ) of quasi-positive sectional curva-

ture admits no projective submersions onto Riemannian manifolds of smaller dimen-
sion. 

Theorem 3 is a purelly local result. 
 

2. Notes on the Proof of Theorem 1 

Let   : ( M, g )  ( N, g ) be a submersion from a pseudo-Riemannian manifold 

( M, g ) onto a pseudo-Riemannian manifold ( N, g ) of smaller dimension. Now we 

assume that all fibres of  are nondegenerate submanifolds of ( M, g ). In this case the 

foliation V ={  1( )y y  N } corresponds a pair of mutually complementary orthog-

onal distributions ker   and ker  

 . 

If  is a projective submersion, then there exists a smooth 1-form  on ( M, g ) 

such that for any two vector fields X,Y  C TM  we have ( see [ 11 ] ) 


X
 Y       

X
Y   =    ( X ) Y   +    ( Y )  X            ( 2.1 )  

where  is the Levi-Civita connection of ( N, g ) and   Y  is differentiated as a vec-

tor field along  . Then, by ( 2.1 ), if  X,Y C (ker 
 ) , we get    X

Y = 0. In this 

case we have Q = 0 for the second fundamental form Q of V. Hence V is a totally geo-

desic foliation of ( M, g ). 

On the other hand, if we set X,Y  



C (ker )  and ZC (ker 
 )  in ( 2.1 ), we 

get  

 Z
X =  ( Z )   X.                                  ( 2.2 ) 

Then g( 
X

Y Z g Y
X

Z Z g X Y, ) ( , ) ( ) ( , )      and by symmetry g( [ X, Y ], Z ) = 0 so 

that ker   is integrable. Moreover g( Q( X, Y ), Z ) = ( Z ) g( X, Y ). Hence ker  

  

defines a totally umbilical foliation H.  

Let ( M, g ) be a simply connected pseudo-Riemannian manifold with two com-

plementary orthogonal foliations V and H such that the leaves of  V are totally geodes-

ic and geodesically complete and the leaves of H are totally umbilic. In this case R. 

Ponge and H. Reckziegel proved ( see   [ 8 ] ) that ( M, g ) is isometric to a twisted 

product M1  f M2 such that H and V correspond to the cannonical foliations of the 

product M1  M2. 

If we suppose the geodesic completeness of ( M, g ), then the leaves of V are geo-

desically complete automatically. Hence the result of R. Ponge and H. Reckziegel im-

plies Theorem 1 immediately. 
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REMARK .  Let ( M, g ) be a Riemannian manifold and  : ( M, g )  ( N, g ) be 

a projective submersion. In this case the following condition is unnecessary in the text 

of Theorem 1: fibres of  are nondegenerate. 

3. Proofs of Theorem 2 and Theorem 3 

 

Let :  ( M, g )  ( N, g ) be a projective submersion of an m-dimensional Rie-

mannian manifold ( M, g ) onto an n-dimensional Riemannian manifold ( N, g ) and 

m > n. Then the foliation V defined by ker  is totally geodesic, the orthogonal distri-

bution ker  is integrable and defines a totally umbilical foliation H.  

The mean curvature vector  h of H defined by g( , Z ) = ( Z ) for Z 



C (ker )  

is tangent to V. Then we may consider its divergence divV 
h on V. By Corollary 2.9 

of [ 12 ] we have  

4 K X Xa

i n

m

i

a

n

( , )
 


11

 =  
1

2
 P 2 + 2 div V 

h ,                 ( 3.1 ) 

where { X1, ... , X n } and { X n1 , ... , X m } are local orthonormal frams of ker  

 and  

ker   respectively, K( X a iX, )  is the sectional curvature of the plane p = span { 

X a iX, } and P is the fundamental tensor of the almost product structure TM = ker   

ker . 

It is know that  1( )y  is a closed submanifold of ( M, g). Applying to ( 3.1 ) the 

Green’s Theorem we get 

 1( )y
{ K X Xa

i n

m

i

a

n

( , )
 


11

 + 
1

8
 P 2 }= 0,                ( 3.2 ) 

where  is the volume form on  1( )y  determined by the metric tensor field g v . 

REMARK . In the case when  1( )y  is disconnected, we can apply the Green’s 

Theorem to each its connected component. 

We assume that K X Xa i( , )   0  for 1  a  n and n + 1  i  m. Then using ( 3.2 ) 

we obtain K X Xa i( , )  = 0 and  P = 0 at each poin of  1( )y . 

The foliation V = {  1 ( y )  y  N } is a decomposition of ( M, g ) into a union 

of disjoint closed submanifolds M =  



1( )y
y N

U , so that  P = 0 at each point of ( M, g ). 

Hence ( see for example [ 9 ] ) the orthogonal distributions ker   and ker 

  are inte-

grable with totally geodesic leaves. Consequently, ( M, g ) is locally a Riemannian 

product of leaves of  ker   and ker 

 . 

Assume now that K  0 and K > 0 for some point x of ( M, g ) where x  1 ( )x . 

In this case from ( 3.2 ) is conluded, that the submersion :  ( M, g )  ( N, g ) can 

not be projective. 
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С.Е. С т е п а н о в, И.И. Ц ы г а н о к 

 

ТРИ ТЕОРЕМЫ О ПРОЕКТИВНЫХ СУБМЕРСИЯХ 

 

Проективные отображения широко изучены в литературе. Теория проектив-

ных субмерсий менее исследована. Настоящая работа посвящена изучению гло-

бальной и локальной теорий проективных субмерсий. В частности, обобщаются 

2 результата в случае некомпактного риманова многообразия. 
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