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Two kernel vanishing theorems and an estimation theorem
for the smallest eigenvalue of the Hodge — de Rham Laplacian

In this paper, we formulate two theorems on the disap-
pearance of the kernel of the Hodge — de Rham Laplacian
and refine the estimate for its smallest eigenvalue on closed
Riemannian manifolds.
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1. Definitions and notations

In this paper, we will consider the Hodge — de Rham Laplaci-
an Ay: C*(AIM) - C®(A1M), where AYM is the vector bundle of
exterior differential g-forms (1 < g < n — 1) over an n-dimensio-
nal Riemannian manifold (M, g).

Next, let (M, g) be covered by a system of coordinate neigh-
borhoods {U,x!,... x™}, where U denotes a neighborhood and
x1,... x™ denote local coordinates in U. Then we can define the
natural frame {X; = d/0x!, ..., X,, = 8/0x™} in an arbitrary coor-
dinate neighborhood {U,x?, ... x™}. In this case, g;; = g(X;,X;)
are local components of the metric tensor g with the indices
Lj k1 ... € {1,2,..,n}. Next, we denote by Ry and Ry the lo-
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cal components the Ricci tensor Ric and the curvature tensor R,
respectively. Then the Hodge — de Rham Laplacian
Ay: C*¥(AIM) - C*(A1M) with respect to local coordinates
x1, ... x™ has the form

Dywi, i, = Doy i, + Rp(w)iy iy

where A = — trace,V? and (see, e. g., [1])
q
Rq(@)i, i, = Z 97 Rij Wi sk iy ~
a=1
q

jk imp. L . . . .
g9 Rlalb]l a)ll...La_lkla.,.l...Lb_lmlb_l...Lp
a,b=1
a+b

for w € AYM. In particular, R; = Ric. In this case, direct calcula-
tions yield the following formula:

1 2 2
5 Aol = - g0, 0) + IRy (W), ) + [IVwll?,

where A = trace, V2 and (see, e.g., [2])
9(Ro(@), 0) = q (Ryo™af,_ ~ T Ryuo*s-wl ;)
In particular, we have
Allwl? = 2 g(Ry(w), w) (1)

for an arbitrary w € AYM N kerAy. We recall that on a closed
Riemannian manifold, by the Hodge’s theorem the dimension of
the kernel of Ay:C®(AIM) - C®(AYM) equals the g Betti
number b, (M), and so the Laplacians determine the Euler charac-
teristic y(M).

We recall that the curvature tensor induces a self-adjoint opera-
tor R: A2M - A?M, defined by the equations, see [3], R(w);; =
= Rijkla)kl for an arbitrary w € A>M. The map R:A’M — A’M,
called the curvature operator of the first kind, see [3; 4], induces a
bilinear form R: A>M X A’M — R by restriction to A°’M. We say
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that R > 0 if the eigenvalues of R as a bilinear form on A’M are
positive (the bilinear form is positive definite). Moreover, if R is
positive definite at each point x € M, then R is also positive defi-
nite at each point x € M. In addition, if R is positive semi-definite
at each point x € M, then so is ‘R.

2. Two kernel vanishing theorems
for the Hodge — de Rham Laplacian

Based on (1) and the above statements, we can formulate the
classical vanishing theorem on the disappearance of the kernel Ay
(see [5, p. 351; 6, p. 334; 7, p. 336-337)).

Theorem 1. Let Ay be the Hodge — de Rham Laplacian defi-
ned on C%-sections of the fibre bundle of exterior differential q-
forms (1 < q <n—1) over a closed n-dimensional Riemannian
manifold (M, g). If the curvature operator of the first kind
R:N’M - A*M of (M, g) is positive semi-definite, then Vo = 0

n
for an arbitrary ¢ € ker Ay and dimgker Ay=b,(M) < (q) In
particular, if R is positive definite at each point x € M, then
dimgker Ay=b,(M) = 0.

Remark. We recall that Bohm and Wilking showed by Ricci-flow
techniques that positive curvature operator Rimplies that a closed
manifold (M, g) is diffeomorphic (not isometric) to a spherical
space form (see [8]).

For the case of a complete and non-compact Riemannian mani-
fold, we deduce the following statement from our inequality (1),
Theorem 3 and Theorem 7 from [9].

Theorem 2. Let Ay be the Hodge — de Rham Laplacian de-
fined on C®-sections of the fibre bundle of exterior differential
q-forms over a complete and non-compact n-dimensional Rieman-
nian manifold (M, g) for (1 < q < n — 1). If the curvature opera-
tor of the first kind R: N°M — A>M of (M, g) is positive semi-
definite, then L¥(KerAy) is trivial for any number k > 1 .
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Remark. Our statement above generalizes the following now-
classic result from [10] and [11]: If R, is positive semi-define at
every point of a complete Riemannian manifold (M, g), then
L?-harmonic g-form is parallel. In particular, if either exists a point
x € M such that R, is strictly positive at x or the volume of (M, g)
is infinite, then every L?-harmonic g-form is identically zero.

3. An estimation theorem for the smallest eigenvalueof
the Hodge — de Rham Laplacian

Having discussed the kernel of the Hodge Laplacian Ay, we
now turn our attention to its first positive eigenvalue on closed
Riemannian manifold, which we will denote by qu]. Note here that
the superscript [g] refers to the degree of the involved eigenform.
We also recall that the spectrum Spec @Ay of the Hodge Laplaci-
an consists only of non-negative eigenvalues with finite multiplici-
ty. We also denote its positive eigenvalues counted with multiplici-
ty by

_ ,lal _ 5lal _ ,la] lal _ ,lq]
0=2" < <A< <P <Al <

where the multiplicity of the eigenvalue 0 is equal to the g-th Betti
number b, (M) of (M, g), by the Hodge — de Rham theory (see,
for example, [5; 7, p. 339]). The case g = 0 corresponds to the La-
place — Beltrami A = 8V operator acting on C®-functions. At the
same time, we known from [12, p. 78] that if all eigenvalues of R
lie in [fin, finax), then the sectional curvature sec satisfies
1/2fpmin < sec < 1/2fy,45. Therefore, if the inequality R = € > 0
holds and then, from the above, we have sec = 1/2 C. In this
case, Ric > 1/2 (n — 1)C, and, as Lichnerowicz has already pro-

ved, /150] >1/2nC (see, for example, [7, p. 82]). A similar result

can be formulated about the eigenvalues A_Elq] and AEIq] of the Lapla-
cians A and Ay, respectively. But let us first recall the following.
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The variational characterization of the eigenvalues /Tflq] and qu] of
the Laplacians A and Ay will be as follows (see [13, p. 393]):

A > R )

for all a > 1. Here, since (M, g) is closed, we have defined the
number (see [13, p. 379])

Ronin = Inf {Rppin(x): x € M}
for Rmin (x) = Inf {g(R, @)x: ¢x € Ex, g(@, @) = 1}. In addi-
tion, we recall that the rough Laplacian A acting on C*(E) is an
order 2 elliptic operator and that its spectrum on a closed (M, g) is

an unbounded sequence of real numbers Spec(®A= {/Ta}aeN

which can be increasingly ordered (see [14])

0= <2 <. <20 <2 <.

with the following convention: igq] is the zero eigenvalue with
multiplicity dim(KerV). In case where there is no parallel section,
i.e., dim(KerV) = 0, the spectrum starts with the positive eigen-
value ;.

Theorem 3. Let (M, g) be an n-dimensional closed Riemanni-
an manifold. Let A and Ay be the rough and Hodge — de Rham
Laplacians actingdefined on C*-sections of the fibre bundle N1M
of differential q-forms, 1 < q < n — 1. If the curvature operator of
the second kind R: XM — N*M satisfies the inequality R > C > 0
and (M, g) is not isometric to the Euclidean n-sphere S™ with its

standard metric, then /TLq] >1/2 nC and AEIq] >1/2nC+
+q(n—q) C for any eigenvalues A_Elq] and AEIq] of Spec DA and
Spec DAy, respectively.

Proof. Let (M,g) be an n-dimensional closed Riemannian
manifold. We recall that if there exists a positive constant C on
(M, g) such that the inequality g(ﬁw,a)) > C||lwl|? holds for any
2-form  w € A’M, then the inequality g(R,(w) w) =
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> q(n—q) C ||w||? holds for any w € AIM and 1 <qg<n-—1
(see [15]). In addition, equality holds for a Riemannian manifold
isometric to the Euclidean n-sphere S™ with its standard metric. In
other words, C serves here as a lower bound for the eigenvalues of
the curvature operator of the first kind R of (M, g) and, in turn,
Rmin = q(n —q) C serves here as a lower bound for the eigen-
values of the Weitzenbock curvature operator R, of (M, g), re-
spectively. In this case the variational characterization of the ei-
genvalues (2) is as follows

A > A 4 g —g)cC 3)

for any AL"] € Spec@A, and /qu] € Spec@A. In contrast to the
Hodge Laplacian Ay, the kernel of the rough Laplacian A acting on
q-forms consists of parallel g-forms, whose dimension is not a

topological invariant. Therefore, if /TE?] = 0, then the associated
eigenspace consists of parallel g-forms. At the same time, it is
well-known that there are no parallel g-forms (1 < g <n—1) on
a closed Riemannian manifold with a positive curvature operator of
the first kind R (see [5, p. 351]). Therefore, in our case, /qu] * 0,
i.e., for the metric g with R > C > 0, all eigenvalues of the rough
and Hodge Laplacians acting on g-forms, 1 < g < n — 1, are non-
Zero.

At the same time, for the metric g with R > € > 0 and every q,
1 < q < 1/2n, inequality (3) can be rewritten as the first Gallot —
Meyer inequality (see [16] and inequality (3.4) from [17])

AElq] >qC+q(n—q)C.

In turn, for the metric g with R > C > 0 and every q, 1/2n <
< g < n — 1, inequality (3) can be rewritten as the second Gallot —
Meyer inequality (see, for example, inequality (3.3) from [16])

A > (n—q)C+qn—q)C,

because 1 < (n—q) < 1/2n. Moreover, two lower bounds of

AElq] are optimal because they can be achieved for a Riemannian
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manifold (M, g) isometric to the Euclidean n-sphere S™ with its
standard metric; in other words, for this variety the equalities are
valid in both cases (see also [7, p. 342]). Therefore, if a Riemanni-
an manifold (M, g) isometric to the Euclidean n-sphere S™, then
the first Gallot — Meyer inequality can be rewritten as the equality

qu] =qC+qn—q)C forevery q, 1 < q < 1/2n. In this case,

from (3) we deduce /qu] <1/2 nC for all a > 1. A similar con-
clusion can be drawn for the case when 1/2n<qg<n-1.

Therefore, /TLq] > 1/2 n C for an n-dimensional closed Riemanni-
an manifold with R > C > 0 and not isometric to the Euclidean

n-sphere S™. Then from (3) we deduce that Ag’] >1/2nC+
+ q(n — q) C. Then our theorem holds.

Remark. 1f /Tglq] > 1/2 n C, then both strictly Gallot — Meyer
inequalities will automatically follow from (3) for an n-dimen-
sional closed Riemannian manifold with R > € > 0 and not iso-
metric to the Euclidean n-sphere S$™.
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[Be TeopeMbl NCHE3HOBEHUA N TEOPEMA OLEHKN
HanmeHbLUEro cobCTBEHHOTO 3HaYeHns nannacnaHa Xomxa — ae Pama

[octynuna B pemakmuio 16.02.2024 r.

B mannoit paboTe paccMmaTpuBaeTcs jamiacuaH Xomka — jae Pawma.
DopMyIHUPYIOTCS IBE TEOPEMBI 00 MICUE3HOBEHHUH sI/Ipa JariaciaHa Xo1-
)ka — ge Pama. YTouHseTcs olleHKa HaMMEHBIIET0 COOCTBEHHOI'O 3Ha-
YCHUA J1aIilaChuaHa Ha 3aMKHyTBIX pI/IMaHOBBIX MHOFOO6pa3I/I$IX.

Knrouegvie crosa: puMaHOBO MHOTOOOpasue, BHEIIHsI AuddepeHiu-
anpHas QopMa, JamiacuaH Xo/ka — e Pama, Teopema mcue3HOBEHUS
spa, HauMeHblIee cCOOCTBEHHOE 3HAUECHHE
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