М.В. Кретов

ТРЕХПАРАМЕТРИЧЕСКОЕ СЕМЕЙСТВО ЭЛЛИПСОИДОВ, ДОПУСКАЮЩЕЕ КОНСТРУИРОВАНИЕ

Исследован подкласс трехпараметрического семейства эллипсоидов в трехмерном аффинном пространстве. Дана конструкция многообразия.

A subclass of three-parametrical collection of ellipsoids in three-dimensional affine space is investigated. The construction of the considered manifold is given.

Ключевые слова: трехпараметрическое семейство, комплекс, эллипсоид, асимптотическая линия, безынтегральное представление, индикатриса вектора.

Key words: three-dimensional collection, complex, ellipsoid, asymptotic line, integral-free representation, vector indicatrix.

Продолжается исследование трехпараметрических семейств (комплексов) эллипсоидов в трехмерном аффинном пространстве, рассмотренных в работах [1-10]. Оно проводится в каноническом репере $R=\{A,\,{\bf e}_1,\,{\bf e}_2,\,{\bf e}_3\}$, где A — центр эллипсоида q; векторы ${\bf e}_1,\,{\bf e}_2$ и ${\bf e}_3$ направлены по тройке сопряженных диаметров эллипсоида, а концы их $A_i,\,i,\,j,\,k=1,\,2,\,3$, лежат на q. Деривационные формулы R запишутся в виде $dA=\omega^i{\bf e}_i,\,d{\bf e}_i=\omega^i_i{\bf e}_i$, причем формы Пфаффа $\omega^i,\,\omega^j_i$ удовлетворяют уравнениям структуры $D\omega^i=\omega^k\wedge\omega^i_k,\,D\omega^j_i=\omega^k_i\wedge\omega^j_k$.

[©] Кретов М. В., 2014

69

Уравнение эллипсоида q запишем в виде $F \equiv (x^1)^2 + (x^2)^2 + (x^3)^2 = 0$.

Изучаются трехпараметрические семейства (комплексы) K^* эллипсоидов — подклассы многообразия \overline{K}_3 , исследованного в работе [10], когда индикатриса вектора $\mathbf{e}_2 - \mathbf{e}_3$ является прямой, параллельной вектору \mathbf{e}_1 . Из определения многообразия K_3^* следует, что его система дифференциальных уравнений Пфаффа будет иметь вид:

$$\omega_{i}^{i} = -\omega^{i}, \, \omega_{1}^{2} = \omega_{1}^{3} = 0, \, \omega_{2}^{1} = \alpha\omega^{3}, \, \omega_{3}^{1} = \alpha\omega^{2},
\omega_{2}^{3} = -\omega^{3}, \, \omega_{3}^{2} = -\omega^{2}, \, d \ln \alpha = \omega^{1} + \omega^{2} + \omega^{3}.$$
(1)

Анализируя систему (1) согласно работе [11], убеждаемся в том, что комплекс K_3^* существует и определяется вполне интегрируемой системой уравнений с произволом 10 постоянных.

Теорема 1. Многообразия K_3^* обладают геометрическими свойствами:

- 1) прямая $l = (A_3, \mathbf{e}_1)$ неподвижна;
- 2) при движении точки A_1 вдоль асимптотической линии γ_1 на поверхности (A_1) , заданной уравнением $\omega^2=0$, прямая $m_1=(A_1,{\bf e}_3)$ и координатная плоскость $(A,{\bf e}_1,{\bf e}_3)$ неподвижны;
 - 3) поверхность (A_3) вырождается в прямую, параллельную вектору \mathbf{e}_1 ;
- 4) точка $P = A + \mathbf{e}_1 + \mathbf{e}_2$ неподвижна при движении точки A_1 вдоль асимптотической линии γ_2 на поверхности (A_1) , заданной уравнением $\omega^3 = 0$;
- 5) класс отображений, порожденный рассматриваемым многообразием, не пересекается с отображениями, исследованными в работах [4], [7].

Доказательство. 1. Пусть $M_1 = A_3 + X^1 \mathbf{e}_1$ — текущая точка прямой l. Тогда, используя систему (1), находим: $dM_1 = (dX^1 + (1-X^1)\omega^1 + \alpha\omega^3)\mathbf{e}_1$, откуда непосредственно следует первое утверждение теоремы.

2. Обозначим $M_2 = A_1 + X^3 \mathbf{e}_3$ и $M_3 = A + X^1 \mathbf{e}_1 + X^3 \mathbf{e}_3$ текущие точки соответственно прямой m_1 и координатной плоскости (A, \mathbf{e}_1 , \mathbf{e}_3). Согласно (1):

$$dM_{2} = \alpha X^{3} \omega^{2} \mathbf{e}_{1} + (1 - X^{3}) \omega^{2} \mathbf{e}_{2} + (dX^{3} + (1 - X^{3}) \omega^{3}) \mathbf{e}_{3},$$

$$dM_{3} = (dX^{1} + (1 - X^{1}) \omega^{1} + \alpha X^{3} \omega^{2}) \mathbf{e}_{1} + (1 - X^{3}) \omega^{2} \mathbf{e}_{2} + (dX^{3} + (1 - X^{3}) \omega^{3}) \mathbf{e}_{3}.$$
(2)

- Из (2) следует, что при движении точки A_1 вдоль асимптотической линии γ_1 прямая m_1 и координатная плоскость $(A, \mathbf{e}_1, \mathbf{e}_3)$ неподвижны.
 - 3. Утверждение теоремы следует из формулы $dA_3 = (\omega^1 + \alpha \omega^2) \mathbf{e}_1$.
 - 4. Из (1) получаем $dP = \alpha \omega^2 \mathbf{e}_1$, откуда вытекает утверждение теоремы.
 - 5. Последнее утверждение верно согласно системе (1) и [4], [7]. \square

Доказанные геометрические свойства комплекса K_3^* позволяют его сконструировать, то есть построить его безынтегральное представление [12]. Для этого проводим следующие построения:

- 1) задаем произвольную прямую l и фиксируем на ней точку P;
- 2) проводим прямую l_1 , параллельную l, и выбираем на ней точку A_3 ;
- 3) задаем плоскость π , проходящую через l и не содержащую l_1 ;

- 4) проводим на плоскости π через точку P прямую m;
- 5) в π выбираем A, не инцидентную l и m; через A проводим прямые, параллельные l и m; в пересечении с m и l получим точки A_1 и A_2 .

С текущей точкой плоскости π совмещаем подвижный репер $R=\{O,\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3\}$ такой, что $O\equiv A$ и $\mathbf{e}_i=\overline{AA_i}$. Образующий элемент исследуемого многообразия — квадрика q, соответствующая центру A, однозначно определяется точками A_i , центром A и сопряженными направлениями $\mathbf{e}_i=\overline{AA_i}$. При движении A в π получается двухпараметрическое семейство эллипсоидов q, а при перемещении A_3 по прямой l — трехпараметрическое семейство эллипсоидов q, которое назовем комплексом \overline{K}_3^* .

Докажем, что построенный комплекс квадрик q совпадает с многообразием K_3^* , то есть определяется в R системой уравнений (1).

Так как l задается уравнениями $X^3=0$, $X^2=1$, то, согласно неподвижности этой прямой, $\omega_1^3=0$, $\omega_2^3=-\omega^3$, $\omega_1^2=0$, $\omega_2^2=-\omega^2$. Прямая l_1 параллельна плоскости π , поэтому $\omega_3^3=-\omega^3$. Из условия неподвижности прямой m, заданной уравнениями $X^3=0$, $X^1=1$ при движении точки A_1 вдоль асимптотической линии γ_2 , следует, что $\omega_1^1=-\omega^1$, $\omega_2^1=k\omega^3$. m_1 определяется уравнениями $X^1=1$, $X^2=0$. Так как эта прямая неподвижна при движении точки A_1 вдоль линии γ_1 , то $\omega_3^1=\sigma\omega^2$, $\omega_3^2=\beta\omega^2$.

Дифференцируя $\omega_3^3 = -\omega^3$, находим $\beta = -1$, поэтому $\omega_3^2 = -\omega^2$. Замыкая $\omega_1^1 = -\omega^1$, $\omega_2^1 = k\omega^3$, получим $\omega_3^1 = k\omega^2$, $dk = k\omega^1 + k\omega^2 + \alpha\omega^3$. Дифференцируя $\omega_3^1 = k\omega^2$, находим $k = \alpha$, и система уравнений принимает вид:

$$\omega_i^i = -\omega^i$$
, $\omega_1^2 = \omega_1^3 = 0$, $\omega_2^1 = \alpha\omega^3$, $\omega_3^1 = \alpha\omega^2$,
 $\omega_2^3 = -\omega^3$, $\omega_2^2 = -\omega^2$, $d \ln \alpha = \omega^1 + \omega^2 + \omega^3$.

Список литературы

- 1. *Кретов М. В.* Комплексы эллипсоидов в аффинном пространстве // Диф. геом. многообр. фигур. 1979. С. 41-47.
- 2. *Кретов М. В.* О комплексах центральных квадрик в аффинном пространстве // Там же. Вып. 11. С. 51-60.
- 3. *Кретов М. В.* Дифференциальная геометрия соответствий, ассоциированных с комплексами эллипсоидов // VI Прибалтийская геометрическая конференция. Таллин, 1984. С. 66.
- 4. *Кретов М. В.* О специальных подклассах дифференциальных отображений, ассоциированных с комплексами центральных невырожденных гиперквадрик // Диф. геом. многообр. фигур. 1984. Вып. 15. С. 49-54.
- 5. *Кретов М. В.* К геометрии комплексов эллипсоидов в аффинном пространстве // Там же. 1985. Вып. 16. С. 34-36.
- 6. *Кретов* М. В. Комплексы эллипсоидов со специальными свойствами ассоциированных с ними дифференцируемых отображений // Там же. 1986. Вып. 17. С. 51-57.

- 7. *Кретов М. В.* Дифференцируемые отображения, ассоциированных с многообразиями гиперквадрик : междунар. конф. по геометрии и приложениям. НРБ. София, 1986. С. 23.
- 8. *Кретов М. В.* О трехпараметрических семействах квадрик // Вестник Российского государственного университета им. И. Канта. 2008. Вып. 10. С. 95—98.
- 9. *Кретов М. В.* О трехпараметрическом семействе квадрик в аффинном пространстве : междунар. конф. «Высокопроизводительные вычисления математические модели и алгоритмы», посвященная Карлу Якоби. Калининград, 2013. С. 156-158.
- 10.~ Кретнов М. В. Геометрическая модель трехпараметрического семейства эллипсоидов // Вестник Балтийского федерального университета им. И. Канта. 2014.~ Вып. 4.~ С. 163-167.~
- $11. \, \mathit{Малаховский} \, \mathit{B. C.} \,$ Введение в теорию внешних форм : учеб. пособие. Калининград, 1978.
- 12. *Кованцов Н. И.* Безынтегральное представление некоторых специальных классов комплексов : мат. сб. М., 1956. Т. 38, № 1. С. 107 128.

Об авторе

Михаил Васильевич Кретов — канд. физ.-мат. наук, доц., Балтийский федеральный университет им. И. Канта, Калининград.

E-mail: kretov1@mail.ru

About the author

Dr Michail Kretov — Ass. Prof., I. Kant Baltic Federal University, Kaliningrad. E-mail: kretov1@mail.ru

71