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A SURPRISING TALE OF LONG-PERIODIC SPIN OSCILLATIONS
IN THE SYNTHETIC ANTIFERROMAGNETS:
SOME EXACT SOLUTIONS

This article is devoted to construction of a mathematical theory capable of
explaining those experimentally observable periodic magnetic oscillations in
the synthetic antiferromagnet Pt/Co/It/Co/Pt that take place after a switch in
the direction of an external magnetic field. In particular, we demonstrate that
in order to understand the aforementioned phenomenon it is essential to first
properly model the collisions between the magnetic domains of different spin
orientations (P~ and AP~). The resulting model comprised of a system of
nonlinear differential equations is closely examined, after which we propose a
simple analytical method of construction of its exact solutions. This method is
shown to generate an infinite family of solutions associated with the degener-
ate hypergeometric functions, parameterized by a natural number N. One of
those solutions with N =2 produces the magnetization function which perfect-
ly fits the experimental data.

Hannas paboma nocBsujena nocmpoenuio MamemMamu4eckoil meopuu,
KOppeKmHo 006ACHAIOWell IKCNePUMEHINAALHO HADAI00deMble Nepuoouteckue
OCYUANAYUY HAMAZHUHEHHOCIIU 6 CUHMemu4eckoM anmudgeppomaeHentuie
Pt/Co/Ir/Co/Pt npu usmenenuu HanpabaeHus BHeuiHeeo MALHUMHO20 NOAAL.
Iokasano, umo cyujecmBernyio poab 6 Modeau uepaiom cmokHobenus opye
Opyeom MazHumuwlx 0omeHo8 pasiuunotl cnunoboil opueHmupobanHocmu
(P~ u AP ). ObcyxoeHsi 0cobeHHOCTIY NOAYHEHHOU CUCTEMbL HeAUHETHbIX
oucpgpepenyuarvnbix ypabHeHuil u npedAoKeH NPocmoil AHAAUMUYECKUT Me-
mM00 NocHpoeHuUs DeckoHeUH020 MHOXKeCBA peuieHUil 3Motl cucnemsl, Bbl-
PAKeHHBIX uepe3 cheyualbHbiM 00pasom Buiopannsle GbipokoderHble eunepeeo-
memputeckue pynxyuu, napamempusobannvie yeavim 4uciom N. Iloxasaro,
umo pewenue c N=2 8 mounocmu cobnadaem ¢ sKkcnepuMenmasvHoil kpubot
HAMAZHUYEHHOCTIU.

Keywords: synthetic antiferromagnets, domain walls, Schrédinger equation, de-
generate hypergeometric equation.

KirogeBble cjI0Ba: CHTeTHYeCKMe aHTU(EppOMarHeTVKM, JOMeHHbIe CTEeHKM,
ypasHeHwe IlIpénymrepa, BEIpOXXIeHHOE ITMIIepreoMeTpUIecKoe ypaBHeHe.

Introduction

Ever since the pioneering work on the potential coupling between the ad-
jacent layers of different magnetic materials, published in 1986 (see [1—4]), the
subject of multilayered ferro-, ferri, and anti-ferromamagnetics has never left
the limelight. The realization of the fact that a subtle change in a thicknesses
of a non-magnetic material — the «spacer» between two (or more) layers of
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ferromagnets — can totally change the character of the interaction between
those layers and switch it between non-existent (a very thick spacer) to ferro-
magnetic to antiferromagnetic came as a storm. Out of this storm a number
of very interesting devices has emerged, including the spin valves and the
synthetic antiferromagnets (SAF). The range of current and prospective ap-
plications of such devices is staggering; it ranges from the magnetic random
access memory [5; 6] to the sensors for various biomedical applications [7; 8].

Despite the fact that a general mechanism at work in the SAF — the Ru-
derman — Kittel — Kasuya — Yosida (RKKY) coupling between the mag-
netic domains in different layers has been known since the end of 1950-s (see
[9; 11]), the particulars of the behavior of magnetization in SAF are still ca-
pable of puzzling the scientists. One such enigma has been described in [12]:
a very unusual non-monotonous relaxation pattern in a Pt/Co/Ir/Co/Pt
multilayered SAF after the switching of the direction of the external magne-
tic field. This was rather unexpected as the equations normally used to de-
scribe the dynamics of the magnetic domains in SAF were all linear and did
not predict the dynamics observed in [12].

A year later the answer has been found [13]: the culprit was shown to be
the collisions between the different magnetic domain in the magnetic layers.
This article serves as a mathematical supplement to [13] and is designed to
provide a detailed mathematical exploration of the subject whereas [13] is
dedicated mostly to the experimental and physical side of the research.

The statement of the problem

Our goal for this article would be to study the behavior of the coupled
magnetic domains in the SAF with a perpendicular anisotropy after the
switching of the external magnetic field. For certainty we will assume that
the thicker of the two magnetic layers — the “anchor” — is the lowest of the
two. A total of four types of magnetic domains are possible: two parallel
states (P* with spins in both magnetic layers looking up and P~ where the
spins point downwards) and two antiparallel (AP® and AP~ — the sign
determined by the spin orientation in the anchor) — see Fig. 1.

Fig. 1. The scheme of the SAF and the main types of the magnetic domains therein
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Initially the SAF in its entirety consists of just one magnetic domain - the
AP" type (for that end we switch on the external magnetic field and wait
until the magnetization of SAF stabilizes). However, if we should turn on
the external magnetic field again, but this time of opposite direction, the new
types of domains will start emerging: the nuclei of the P~ and the AP~ pha-
ses. But, of course our sample being SAF, only one type — the AP~ will sur-
vive in the end.

With that being said, let us look at the simplest model of the dynamics of
those three types of domains.

Let z be a concentration density of AP* nuclei;

x — a density of P-nuclei;

y — a density of the AP-nuclei;

a(H,T) — an efficiency of the P-nuclei generation from the AP+ phase;

B(H,T) — an efficency of AP-nuclei generation from the P- phase;

v(H,T) — an efficiency of the AP-nuclei generation from the AP* phase.

Naturally, since the P~ phase is only transitory, and the total
concentration is limited by the size of the sample, we conclude that the rate
of growth of AP~ must be proportional to both z (the more AP" nuclei means
more chance for an AP~ to emerge) and the x (every P~ nuclei has a chance
to morph into AP~ nuclei). For the same reason the growth of x shall also be
proportional to z but be stifled by the big x (the more of them we have the
more will convert to AP~ phase). Finally, the finite size of the sample deter-
mines that the sum of all three types of nuclei must be a constant — in our
case 1 (since we are working with the concentrations).

This produces the following simple linear system:

dx

—=az-fx

dt “

d—y:;/z+ﬁ’x @)
dt

x+y+z=1

with the initial conditions corresponding to the starting P* state at t=0 are
z=1, x=0, y=0. Once we solve this system, calculating the total
magnetization of SAF will be an easy task:

M(t)=M;, (-x-03y+z),

where Mg would be the saturating magnetization of the thick layer.
So, how do we solve (1)? First of all, if we sum up the first two equation
in (1) we will end up with

z=—(a+y)z,

whose general solution is

2=z, "7,
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Plugging this into the first equation in (1) produces the following
equation on x:
i=aze N - B,

which is an inhomogeneous linear differential equation. Its general solution is:

x=x,- I P S
B-a-y B-a-y

This we can of course use in the equation on y. Solving it and using the
condition y, =1-x, -z, yields the following solution

y=1-2 |yt [y _GR e
a+y B—a-y B-a-y

The resulting magnetization M together with the experimental results
are shown on Figure 2.
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Fig. 2. Magnetic relaxation in Pt(3 nm)/Co(1.05 nm)/Ir(1.5 nm)/Co(0.7 nm)/Pt(3 nm)
in the magnetic field - 1350 Oe at T=100 K. Here M(t) =Ms; (-x-0.3y +z),
where My, is the saturating magnetization of the thick layer. The solid line

is the exact solution of (1), the blue circles — the results of the observations
(for further details see [13])

Everything looks good if not for one little thing: while the behaviour of
the solution is motonous (owing to the linearity of the system (1)), at some
values of the external magnetic field the magnetization’s dynamic is no lon-
ger monotonous.

This can only mean one thing: at those values the model must be incorrect!

The model with the domain interaction

Let’s take into account the fact that in the process of their growth the P-
and AP-domains inevitably bump into each other. In the process the P- — AP-
transition takes place: a P- phase absorption by AP- phase.
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To account for this absorption, we have to add two additional terms,
proportional to the probability dxy of the nuclei approaching each other:

d—x:az—ﬂx—é'xy

dt

d—y:yz+ﬁ’x+5xy’ (2)
dt

x+y+z=1

where the coefficient 6 describes the efficiency of the P- phase absorption by
AP- phase.

The initial conditions at t=0 remain the same: z=1, x=0, y=0.

A close look at our system is in order...

If we sum up first and second equations in (2), we'll get:

t=~(a+y)z,
whose general solution is
z= zoe_p t 3
and p=a+y. According to (2), this yields the system:

y:l—x—zoe_pt, 4)
i:azoe_pt+[5zoe_ptfﬁf§+§xe. (5)

The equation (5) should look familiar to anyone proficient in the theory
of O.D.E’s: it is the famous Riccati equation [14]. One of its interesting
properties if that this equation is homogenous with respect to the variables
x and x (but not ), which implies that (5) can be linearized by the following
change of variable:

()=~ £ (), 6)

which converts the Riccati equation into an even more famous Schrdidinger
equation. And if we move one step further and additionally rescale f{f) as:

0z
f(t)=exp{—l[at+—oe_ptﬂV(t), o=p+7,
2 P
then we'll end up with the Schrodinger equation that looks like this:
%:%E_Zpt+§[p—o-—2a]e_pt+i0'2. (7)

Hence, the entire problem reduces to finding a regular solution of (7)
which does not vanish for any given t>0 (so that the r.h.s of (7) remains
well-defined), and then using it to find x:

o _f0 pt v ®)

x(t) =

25 2 SV(1)
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Prior to that, however, it would be handy to replace the time variable ¢
with a new independent variable & =e™”' . After that, the Schrodinger equa-
tion assumes a much simpler form:

2
Vn+lvf_ a2+a_b+c—2 V:O, (9)
£ ¢ ¢

where for the sake of simplicity we have introduced three new coefficients:
o o+2a

a=—, b=1- , c=—=.
2p p 2p

The goal now would be to study this equation and to find out a way to
construct its solutions. But we once again remind our reader, that we also
have an additional burden on our shoulders: respecting the physical impli-
cations of (6), by making sure that the newly discovered solutions do not
vanish (for if they do, the density x of - will become singular, and this defi-
nitely would not do!). How shall we approach this daunting task?

Let us start by figuring out the general behavior of the solutions of (9) at
the boundaries of the domain 0< & < +o0.

1. What happens with the solutions of (9) around £=07?
For sufficiently small & (9) turns into
2
V"+1V'—C—2V )
¢ ¢

It is easy to see that this equation has two partial solution V, =™ and
V, =£&™, so its general solution would be just a linear combination of the two:
V(&)=c,&° +c,&™. By assumption, V cannot be equal to zero (so ¢, #0),
hence when & - 0

V> ETC
2. Similarly, when & — o, (9) reduces to
V'-a*V =0,
whose solutions have the asymptotes
V- eia‘f .
Armed with this knowledge, we can utilize a new variable w(g), defined as:
VoM e, k=+1,

which, upon substitution into (9) reduces it to the equation for the degenerate
hypergeometric function [15]:

+(1—2c—g)di‘;—(j)—u(k—2ck—b)w(§)=o, (10)
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where
¢ =-2ka&. (11)

In order to proceed further, it is advisable to represent the solution of de-
generate hypergeometric equation as [16]:

ot
V(t)=e 2 {Cl exp(%e_ptjw+(t)+ ¢y exp(—%e_ptjw_(t)}, (12)

where, as before, ¢, and c, are arbitrary real constants, the functions w, and

w_ are defined as:

5 -
w_ﬁt):F(%,l—%,—;e pt)/

(13)
w_(t) = F(l— ora 1—5,£e‘ptj
P PP
and the function F in (13) is given by the following convergent series:
2
F@Lﬂg):l+é£+£&iiaé;+m (14)

B1! B(B+1) 2!

So, what possible benefit might we gain from (12)— (14) which we could
not from the original Schrédinger equation (9)? Quite a lot, in fact, since now

the problem of regularity of x(t) and y(t) reduces to a question of whether
the series (13) has any zeroes or not. And a close look at the series w, () re-
veals it to be alternating! Therefore, if we are to remove any possibility of V(f)
turning to zero (henceforth producing a pole in both x(t) and y(t)), we have
to remove the w, (¢) from the big picture — which we can do by setting
¢, = 0. But even that is not the end of the story.

Since we are left with just one series w_(t), we can play a little bit with
its arguments in (14). In particular, we can turn w_(t) into a finite series; all

we have to do for that end is introduce a natural number N and choose the
parameters A and B for F(A,B,{) to depend on N as

A=-N
B=1-N-L (15)
P
Voila! We end up with an infinite of solutions Vj, (t), parameterized via
the natural number N, each one of them being containing within a non-
vanishing polynomial of order N w.r.t. the variable ¢ and having the fol-

lowing form
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o
N ()= exp{—z—e

on t
Pt ONT RN 1-n-L 2Pty (1e)
P pop
=7+Np and F(...) is the series defined by (14).

where we have defined oN

Since we have gone this far, let us take a look at some first iterations of

the function V,;:

V.

86

)
Vo (t) =exp| ——e
2() P{ 2

—pt +%(y+2p)t:|.[1+

o0 _pt 1 o _pt
H=exp| —e P +=(y+p)t || 1+—¢ 7 p
1® P{ 20 2(7 p) }( j

e

25 —pt | 52 20|
p+y r(p+7)

o —pt 1
Vo) =exp| ——e P +=(y +3p)t ,
3() P{ 2 2(7 P)}

352

2Pt

1+ 30 Py
20+y

(20+7)(p+7)

e—3pt]
(20+7)(p+7)r '

As we can clearly see from these simplest cases already at the second it-
eration the solution demonstrates a very clear non-monotonic behavior. In

particular, that very iteration, V,(t), corresponds to the following magnetic

nuclei concentrations:

m22(1-2)[(1+2m)z +1]

(-

z(1-
(1+2m)z(mz+2)+m2 +4m+2

)[m 2+3m)z+m +4m+2}

z=e

o
where —=m.
V4

(
(1+2m)z(mz+2)+m2 +4m+2
—pt

If we them use (16) to calculate the total magnetization M(t), we will get

the following:

—3(m2 +4m+2)+z[2(3m2

- 23m-13) + mz( 20m ~ 49m - 26 - 20m(1+ Zm)z”

M=

10[m(1+2m)z(mz+2)+m2+4m+2} '

which happens to fit the observational data perfectly — see Figure 3.
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Fig. 3. Magnetic relaxation in Pt(3 nm)/Co(1.05 nm)/Ir(1.5 nm)/Co(0.7 nm)/Pt(3 nm)
in the magnetic fields - 1360 Oe (b), - 1354 Oe (c), -1370 Oe (d)
at T=100 K. The solid lines are exact solutions (16),
the blue circles — the results of the observations (see [13])
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