$$\begin{split} +2\partial_{i}fdx^{i} \wedge \overset{2}{\omega}(X',Y',Z') &= \partial_{X'} \overset{2}{\omega}(Y',Z') - \partial_{Y'} \overset{2}{\omega}(X',Z') + \partial_{Z'} \overset{2}{\omega}(X',Y') - \\ &- \overset{2}{\omega}([X',Y'],Z') + \overset{2}{\omega}([X',Z'],Y') - \overset{2}{\omega}([Y',Z'],X') + \\ &+ 2\bigg[df(Z'\big|_{\partial_{i}})\overset{2}{\omega}(X'\big|_{\partial_{i}},Y'\big|_{\partial_{i}})\bigg]_{alt(X',Y',Z')}. \text{ Чтд.} \end{split}$$

Список литературы

1. *Кобаяси Ш., Номидзу К.* Основы дифференциальной геометрии / пер. с англ. М., 1981. Т. 1.

K. Polyakova

GENERALIZATION OF EXTERIOR DIFFERENTIAL BY MEANS OF VIRTUAL FUNCTION

Generalization of exterior differential and some its properties are considered

УДК 514.75

Ю. И. Попов

(Российский государственный университет им. И. Канта, Калининград)

РЕГУЛЯРНЫЕ ГИПЕРПОЛОСЫ $^{\mathrm{P}}\mathrm{H}_{\mathrm{M}}$ ПРОЕКТИВНОГО ПРОСТРАНСТВА

Дано задание гиперполосы ${}^p{\rm H}_m$ в репере 1-го порядка, и доказана теорема существования. Построен двойственный образ гиперполосы ${}^p{\rm H}_m$.

Ключевые слова: гиперполоса, форма, проективное пространство, двойственный образ.

Во всей работе придерживаемся следующей схемы индексов и обозначений:

1)
$$I, J, K = \overline{1, n};$$
 $i, j, k, s = \overline{1, m};$ $a, b, c = \overline{m + 1, p};$ $\alpha = (a, \rho),$ $\rho, \varphi, \lambda = \overline{p + 1, n - 1};$ $\alpha, \beta, \gamma = \overline{m + 1, n - 1};$ $\overline{I}, \overline{J}, \overline{K} = \overline{0, n};$

2) символом δ обозначим дифференцирование по вторичным параметрам, а значение форм $\omega_{\overline{K}}^{\overline{J}}$ при фиксированных главных параметрах обозначим через $\pi_{\overline{K}}^{\overline{J}}$. В этом случае оператор ∇ обозначается ∇_{δ} .

§1. Задание регулярной гиперполосы ${}^{p}H_{m}$ проективного пространства P_{n}

В n-мерном проективном пространстве P_n рассмотрим подвижной точечный репер $\{A_{\overline{J}}\}$, состоящий из (n+1) аналитических точек $A_{\overline{J}}$, и двойственный ему тангенциальный репер $\{\tau^{\overline{K}}\}$, состоящий из гиперплоскостей $\tau^{\overline{K}}$, порождаемых точками $A_{\overline{J}}$.

Для элементов двойственных реперов $\{A_{\overline{J}}\}$ и $\{\tau^{\overline{K}}\}$ имеют место соотношения:

$$(A_J, \tau^{\overline{K}}) = \delta^{\overline{K}}_{\overline{I}},$$

где $\delta^{\overline{K}}_{\overline{I}}$ — символ Кронекера.

Уравнения инфинитезимальных перемещений точечного и тангенциального реперов пространства P_n запишем таким образом:

$$dA_{\overline{J}} = \omega_{\overline{J}}^{\overline{K}} A_{\overline{K}} \; , \; d\tau^{\overline{K}} = -\omega_{\overline{J}}^{\overline{K}} \tau^{\overline{J}} \; , \;$$

где

$$d\omega_{\overline{J}}^{\overline{K}}=\omega_{\overline{J}}^{\overline{L}}\wedge\omega_{\overline{L}}^{\overline{K}},\quad \sum_{\overline{J}}\omega_{\overline{J}}^{\overline{J}}=0.$$

Рассмотрим регулярную m-мерную гиперполосу [1] $H_m \subset P_n$, оснащенную П-плоскостями размерности p, где $m , которые содержат касательные плоскости к базисной поверхности. Такие гиперполосы обозначим <math>^pH_m$. Полагаем $A = A_0$, $\tau = \tau^n$, помещаем точки $\{A_\alpha\}$ репера \mathbb{R}^0 в характеристику $X_{n-m-1}(A_0)$. Точки $\{A_i\}$ и $\{A_a\}$ репера \mathbb{R}^0 находятся в плоскости $\Pi(A_0)$, точки $\{A_a\}$ и $\{A_\rho\}$ в совокупности дают точки $\{A_\alpha\}$, то есть $\Pi(A_0) = [A_0, A_i, A_a]$, $X_{n-m-1}(A_0) = [A_0, A_a, A_\rho]$. Выбранный таким образом репер \mathbb{R} является репером \mathbb{R}^1 1-го порядка.

Уравнения движения репера R^1 при фиксации точки A_0 запишем в виде:

$$\begin{split} \delta A_0 &= \pi_0^0 A_0 \,, \delta A_i = \pi_i^0 A_0 + \pi_i^j A_j \,, \delta A_a = \pi_a^0 A_0 + \pi_a^b A_b \,, \\ \delta A_\rho &= \pi_\rho^0 A_0 + \pi_\rho^\phi A_\phi + \pi_\rho^a A_a \,, \\ \delta A_n &= \pi_n^0 A_0 + \pi_n^i A_i + \pi_n^a A_a + \pi_n^\rho A_\rho + \pi_n^n A_n \,. \end{split}$$

Отсюда следует, что

$$\pi_0^i = 0 \; , \; \pi_i^a = 0 \; , \; \pi_a^i = 0 \; , \; \pi_i^\rho = 0 \; , \; \pi_a^\rho = 0 \; , \; \pi_i^n = 0 \; , \; \pi_\rho^i = 0 \; \; (1.1)$$

— уравнения группы стационарности образующего элемента гиперполосы ${}^{p}H_{m}$.

Известно [3], что для регулярной гиперполосы выполняются условия:

$$\omega_0^n = 0$$
, $\omega_a^n = 0$, $\omega_0^n = 0$, $\omega_0^n = 0$, $\omega_0^n = 0$. (1.2)

Кроме того, из уравнений (1.1) вытекает, что формы

$$\omega_0^i, \, \omega_i^a, \, \omega_i^\rho, \, \omega_i^n, \, \omega_a^i, \, \omega_a^\rho, \, \omega_\rho^i$$
 (1.3)

являются главными формами гиперполосы ${}^pH_m \subset P_n$. Примем формы $\omega_0^j = \omega^j$ за базисные и запишем разложение остальных главных форм по этим базисным:

$$\omega_{i}^{a} = \Lambda_{ij}^{a}\omega^{j}, \ \omega_{a}^{i} = \Lambda_{aj}^{i}\omega^{j} = \Lambda_{a}^{ij}\omega_{j}^{n}, \ \omega_{i}^{\rho} = \Lambda_{ij}^{\rho}\omega^{j},$$

$$\omega_{a}^{\rho} = \Lambda_{aj}^{\rho}\omega^{j} = \Lambda_{a}^{\rho j}\omega_{j}^{n}, \ \omega_{i}^{n} = \Lambda_{ij}^{n}\omega^{j}, \ \omega_{\rho}^{i} = \Lambda_{\rho j}^{i}\omega^{j} = \Lambda_{\rho}^{ij}\omega_{j}^{n}.$$
 (1.4)

Дифференцируя (1.4) внешним образом, получаем:

$$\begin{split} \nabla \Lambda^{a}_{ij} + \Lambda^{a}_{ij} \omega^{0}_{0} + \Lambda^{\rho}_{ij} \omega^{a}_{\rho} + \Lambda^{n}_{ij} \omega^{a}_{n} &= \Lambda^{a}_{ijk} \omega^{k} \,, \, \nabla \Lambda^{n}_{ij} + \Lambda^{n}_{ij} \omega^{0}_{0} = \Lambda^{n}_{ijk} \omega^{k} \,, \\ \nabla \Lambda^{\rho}_{ij} + \Lambda^{\rho}_{ij} \omega^{0}_{0} + \Lambda^{n}_{ij} \omega^{\rho}_{n} &= \Lambda^{\rho}_{ijk} \omega^{k} \,, \, \nabla \Lambda^{i}_{aj} + \Lambda^{i}_{aj} \omega^{0}_{0} - \delta^{i}_{j} \omega^{0}_{a} = \Lambda^{i}_{ajk} \omega^{k} \,, \\ \nabla \Lambda^{\rho}_{aj} + \Lambda^{\rho}_{aj} \omega^{0}_{0} &= \Lambda^{\rho}_{ajk} \omega^{k} \,, \, \nabla \Lambda^{i}_{\rho j} + \Lambda^{i}_{\rho j} \omega^{0}_{0} - \delta^{i}_{j} \omega^{0}_{\rho} = \Lambda^{i}_{\rho jk} \omega^{k} \,. \end{split}$$

Геометрические объекты $\Gamma_2 = \{A^a_{ij}, A^\rho_{ij}, A^n_{ij}, A^i_{aj}, A^\rho_{aj}, A^i_{\rho j}\}$, $\Gamma_3 = \{\Gamma_2, A^a_{ijk}, A^\rho_{ijk}, A^i_{ijk}, A^\rho_{ajk}, A^i_{ojk}\}$ являются фундаментальными объектами соответственно второго и третьего порядка гиперполосы pH_m .

Уравнения (1.2), (1.4), (1.5) задают регулярную гиперполосу pH_m в репере первого порядка \mathbb{R}^1 проективного пространства P_n .

§2. Теорема существования гиперполосы ${}^{p}\mathrm{H}_{m}$

Замыкание системы (1.4) запишем в виде:

$$\nabla \Lambda^{a}_{ij} \wedge \omega^{j} = 0 , \ \nabla \Lambda^{i}_{aj} \wedge \omega^{j} = 0 , \ \nabla \Lambda^{\rho}_{ij} \wedge \omega^{j} = 0$$

$$\nabla \Lambda^{\rho}_{ai} \wedge \omega^{j} = 0 , \ \nabla \Lambda^{n}_{ij} \wedge \omega^{j} = 0 , \ \nabla \Lambda^{i}_{Oi} \wedge \omega^{j} = 0 . \tag{2.1}$$

Исследуем систему (2.1). Количество линейно независимых функций, входящих в эту систему, равно

$$q = \frac{m(m+1)}{2}[n+2(n-m-1)] + (n-p-1)(p-m)m.$$

Следуя работе [2], определим характеры системы (2.1):

$$S_1 = m \cdot [2(n-m-1)+n] + (p-m)(n-p-1),$$

$$S_2 = (m-1) \cdot [2(n-m-1)+n] + (p-m)(n-p-1),$$

При этом $q = S_1 + S_2 + ... + S_m = \frac{m(m+1)}{2} [n+2(n-m-1)] + +(n-p-1)(p-m)m$. Подсчитаем число Картана системы (2.1):

$$\begin{split} Q &= S_1 + 2S_2 + 3S_3 + \dots + mS_m = \\ &= \frac{(p-m)(n-p-1)m(m+1)}{2} + \frac{[2(n-m-1)+n]m(m+1)(m+2)}{6}. \end{split}$$

Разрешим систему (2.1) по лемме Картана:

$$\nabla \Lambda^{a}_{ij} = \Lambda^{a}_{ijk} \omega^{k} , \ \nabla \Lambda^{i}_{aj} = \Lambda^{i}_{ajk} \omega^{k} , \ \nabla \Lambda^{\rho}_{ij} = \Lambda^{\rho}_{ijk} \omega^{k} ,$$

$$\nabla \Lambda^{\rho}_{aj} = \Lambda^{\rho}_{ajk} \omega^{k} , \ \nabla \Lambda^{n}_{ij} = \Lambda^{n}_{ijk} \omega^{k} , \ \nabla \Lambda^{i}_{\rho j} = \Lambda^{i}_{\rho jk} \omega^{k} . \tag{2.2}$$

Найдем число линейно независимых функций, стоящих в правых частях системы (2.2). Их число будет равно:

$$N = \frac{(p-m)(n-p-1)m(m+1)}{2} + \frac{[2(n-m-1)+n]m(m+1)(m+2)}{6}$$

Следовательно, Q = N. Данная система находится в инволюции. Решение этой системы существует, и произвол ее определяется характером S_m . Итак, имеет место

Теорема 1. В п-мерном проективном пространстве P_n регулярная гиперполоса pH_m существует с произволом (3n-2m-2)+(p-m)(n-p-1) функций т аргументов.

§3. Двойственный образ регулярной гиперполосы ${}^{p}H_{m}$

Уравнения

$$\begin{cases} \omega_{a}^{n} = 0, & \omega_{\phi}^{n} = 0, & \omega_{0}^{a} = 0, & \omega_{0}^{n} = 0, \omega_{i}^{n} = \Lambda_{ij}^{n} \omega^{i}, \\ \omega_{a}^{j} = \Lambda_{ij}^{i} \omega^{j}, & \omega_{i}^{\rho} = \Lambda_{ij}^{\rho} \omega^{j}, & \omega_{\rho}^{j} = \Lambda_{\rho j}^{i} \omega^{j}, \\ \omega_{a}^{\rho} = \Lambda_{ij}^{\rho} \omega^{j}, & \omega_{\rho}^{\rho} = \Lambda_{\rho j}^{a} \omega^{j}, & \omega_{i}^{q} = \Lambda_{ij}^{a} \omega^{j} \end{cases}$$

$$(3.1)$$

представляют собой дифференциальные уравнения без соответствующих замыканий регулярной гиперполосы ${}^p H_m$ в репере первого порядка $\{A_{\overline{I}}\}$:

$$A_0 = A, A_i \in T_m(A_0), A_a \in X_{n-m-1}(A_0), A_\rho \in X_{n-p-2}(A_0).$$

Продолжая уравнения системы (3.1), имеем:

$$\nabla \Lambda_{ik}^{n} + \Lambda_{ik}^{n} \omega_{0}^{0} = \Lambda_{ikj}^{n} \omega^{j}, \qquad (3.2)$$

$$\nabla \Lambda_{ik}^{a} + \Lambda_{ik}^{a} \omega_{0}^{0} + \Lambda_{ik}^{n} \omega_{n}^{a} = \Lambda_{ikj}^{a} \omega^{j}, \qquad (3.3)$$

$$\nabla \Lambda_{ik}^{\rho} + \Lambda_{ik}^{\rho} \omega_{0}^{0} + \Lambda_{ik}^{n} \omega_{n}^{\rho} = \Lambda_{ikj}^{\rho} \omega^{j}, \qquad (3.3)$$

$$\nabla \Lambda_{ij}^{i} + \Lambda_{ij}^{i} \omega_{0}^{0} - \delta_{j}^{i} \omega_{0}^{0} = \Lambda_{ijk}^{i} \omega^{k}, \qquad (3.3)$$

$$\nabla \Lambda_{\rho j}^{i} + \Lambda_{\rho j}^{i} \omega_{0}^{0} - \delta_{j}^{i} \omega_{\rho}^{0} = \Lambda_{\rho jk}^{i} \omega^{k}, \qquad (3.3)$$

$$\nabla \Lambda_{\rho j}^{\rho} + \Lambda_{\rho j}^{\rho} \omega_{0}^{0} - \delta_{j}^{i} \omega_{\rho}^{0} = \Lambda_{\rho jk}^{i} \omega^{k}, \qquad (3.3)$$

В силу регулярности ($|\Lambda_{ij}^n| \neq 0$) гиперполосы H_m можно ввести в рассмотрение обращенный симметричный тензор Λ_n^{ik} и относительный инвариант $\Lambda = |\Lambda_{ij}^n| \neq 0$ первого порядка. Их уравнения в силу (3.1) запишутся в виде:

$$\Lambda_n^{ik}\Lambda_{ki}^n = \delta_i^i, \ \nabla \Lambda_n^{ij} - \Lambda_n^{ij}\omega_0^0 = -\Lambda_n^{is}\Lambda_n^{ij}\Lambda_{slk}^n\omega^k, \tag{3.4}$$

$$d \ln \Lambda = 2\omega_i^i - m(\omega_0^0 + \omega_n^n) + \Lambda_k \omega^k, \Lambda_k = \Lambda_n^{ii} \Lambda_{iik}^n.$$
 (3.5)

Следуя работе [4], построим невырожденный тензор $b^n_{\alpha\beta}~(B=\mid b^n_{\alpha\beta}\mid\neq 0)$ и, вообще говоря, несимметрический

$$\left\|b_{\alpha\beta}^n\right\| = \left\|b_{ab}^n \ 0 \atop 0 \ b_{\rho\varphi}^n\right\|,$$

компоненты которого удовлетворяют условиям:

$$b_{n}^{\beta\gamma}b_{\gamma\alpha}^{n} = \delta_{\alpha}^{\beta}, \ b_{n}^{ac}b_{cb}^{n} = \delta_{b}^{a}, \ b_{n}^{\rho\varphi}b_{\varphi\lambda}^{n} = \delta_{\lambda}^{\rho},$$

$$\nabla b_{\alpha\beta}^{n} + b_{\alpha\beta}^{n}\omega_{0}^{0} = b_{\alpha\beta k}^{n}\omega^{k}, \nabla b_{ab}^{n} + b_{ab}^{n}\omega_{0}^{0} = b_{abk}^{n}\omega^{k}, \qquad (3.6)$$

$$\nabla b_{\rho\varphi}^{n} + b_{\rho\varphi}^{n}\omega_{n}^{n} = b_{\rho\varphi k}^{n}\omega^{k},$$

$$\nabla b_{n}^{\alpha\beta} - b_{n}^{\alpha\beta}\omega_{0}^{0} = b_{nk}^{\alpha\beta}\omega^{k}, \nabla b_{n}^{ab} - b_{n}^{ab}\omega_{0}^{0} = b_{nk}^{ab}\omega^{k},$$

$$\nabla b_{n}^{\rho\varphi} - b_{n}^{\rho\varphi}\omega_{0}^{0} = b_{nk}^{\rho\varphi}\omega^{k}. \qquad (3.7)$$

Дифференцируя определитель $E = \left| b^n_{lpha eta} \right|
eq 0$, получим

$$d \ln E + (n - m - 1)(\omega_0^0 + \omega_n^n) - 2\omega_\beta^\beta = E_k \omega^k, E_k = b_n^{\beta \alpha} b_{\alpha \beta k}^n.$$
 (3.8)

Согласно уравнениям (3.5)—(3.8), ненулевой относительный инвариант $H = \Lambda \cdot E$ удовлетворяет дифференциальному уравнению

$$d \ln H + (n+1)(\omega_0^0 + \omega_n^n) = H_k \omega^k, \ H_k = \Lambda_k + E_k.$$
 (3.9)

Продолжая уравнение (3.9), находим:

$$\nabla H_k + H_k \omega_0^0 + (n+1)(\omega_k^0 - \Lambda_{sk}^n \omega_n^s) = H_{ks} \omega_0^s.$$
 (3.10)

Следуя работе [4], утверждаем, что с регулярной гиперполосой H_m ассоциируются два проективных пространства $P_n(V_m)$ и $\overline{P}_n(V_m)$, двойственные между собой относительно инволютивного преобразования $J:\omega_{\overline{J}}^{\overline{K}}\to \overline{\omega}_{\overline{J}}^{\overline{K}}$ структурных форм Пфаффа по закону:

$$\begin{split} \overline{\omega_0^a} &= \omega_0^a = 0 \,, \; \overline{\omega_0^\rho} = \omega_0^\rho = 0 \,, \; \overline{\omega_0^n} = \omega_0^n = 0 \,, \; \overline{\omega_\rho^n} = \omega_\rho^n = 0 \,, \\ \overline{\omega_0^i} &= \omega_0^i \,, \; \overline{\omega_0^0} = \omega_0^0 - \widetilde{H}_k \omega_0^k \,, \; \overline{\omega_n^n} = \omega_n^n - \widetilde{H}_k \omega_0^k \,, \; \overline{\omega_0^n} = \omega_0^n \,, \\ \overline{\omega_n^0} &= \omega_n^0 \,, \; \overline{\omega_n^i} = -\Lambda_n^{ik} \omega_k^0 \,, \; \overline{\omega_i^0} = \Lambda_{ki}^n \omega_n^k \,, \; \overline{\omega_i^n} = -\Lambda_{ki}^n \omega_0^k \,, \\ \overline{\omega_i^j} &= \omega_i^j + (\Lambda_n^{jk} \Lambda_{kis}^n - \delta_i^j \widetilde{H}_s) \omega_0^s \,, \; \overline{\omega_i^a} = -\Lambda_{ki}^n b_n^{ab} \omega_b^k \,, \\ \overline{\omega_i^\rho} &= -\Lambda_{ki}^n b_n^{\rho \varphi} \omega_\omega^k \,, \; \overline{\omega_\rho^\rho} = -\Lambda_{b\rho}^n b_n^{\rho \varphi} \omega_\omega^b \,, \; \overline{\omega_n^a} = -b_n^{ab} \omega_b^0 \,, \end{split} \tag{3.11}$$

$$\begin{split} & \overline{\omega}_{n}^{\,\rho} = -b_{n}^{\,\rho\varphi}\omega_{\varphi}^{0}\,, \ \overline{\omega}_{a}^{0} = b_{ba}^{n}\omega_{n}^{b}\,, \ \omega_{\rho}^{0} = b_{\varphi\rho}^{n}\omega_{n}^{\varphi}\,, \\ & \overline{\omega}_{a}^{i} = -b_{ba}^{n}\Lambda_{n}^{ik}\omega_{k}^{b}\,, \ \overline{\omega}_{\rho}^{i} = -b_{\varphi\rho}^{n}\Lambda_{n}^{ik}\omega_{k}^{\varphi}\,, \ \overline{\omega}_{\rho}^{a} = -b_{\varphi\rho}^{n}\Lambda_{n}^{ab}\omega_{b}^{\varphi}\,, \\ & \overline{\omega}_{a}^{b} = \omega_{a}^{b} + (b_{n}^{bc}b_{cak}^{n} - \delta_{a}^{b}\widetilde{H}_{k})\omega_{0}^{k}\,, \ \overline{\omega}_{\rho}^{\varphi} = \omega_{\rho}^{\varphi} + (b_{n}^{\varphi\lambda}b_{\lambda\rho k}^{n} - \delta_{\rho}^{\varphi}\widetilde{H}_{k})\omega_{0}^{k}\,, \end{split}$$
 где
$$\begin{split} & \widetilde{H}_{k} = \frac{H_{k}}{n+1}\,. \end{split}$$

Из соотношений (3.1, 3.11) имеем:

$$\overline{\omega}_{a}^{0} = \overline{\omega}_{0}^{\rho} = \overline{\omega}_{o}^{n} = \overline{\omega}_{a}^{n} = \overline{\omega}_{\rho}^{n} = 0, \quad \overline{\omega}_{i}^{n} = \overline{\Lambda}_{ij}^{n} \overline{\omega}_{0}^{j},
\overline{\omega}_{a}^{\rho} = \overline{\Lambda}_{aj}^{\rho} \overline{\omega}_{0}^{j}, \quad \overline{\omega}_{i}^{a} = \overline{\Lambda}_{ij}^{a} \overline{\omega}_{0}^{j}, \quad \overline{\omega}_{i}^{\rho} = \overline{\Lambda}_{ij}^{\rho} \overline{\omega}_{0}^{j},
\overline{\omega}_{a}^{i} = \overline{\Lambda}_{aj}^{i} \overline{\omega}_{0}^{j}, \quad \overline{\omega}_{\rho}^{i} = \overline{\Lambda}_{\rho j}^{i} \overline{\omega}_{0}^{j}, \quad \overline{\omega}_{\rho}^{a} = \overline{\Lambda}_{\rho j}^{a} \overline{\omega}_{0}^{j},$$
(3.12)

где

$$\overline{\Lambda}_{ij}^{n} = -\Lambda_{ij}^{n}, \quad \overline{\Lambda}_{ij}^{a} = -\Lambda_{ki}^{n} b_{n}^{ab} \Lambda_{bj}^{k},
\overline{\Lambda}_{ij}^{\rho} = -\Lambda_{ki}^{n} b_{n}^{\rho \varphi} \Lambda_{\varphi j}^{k}, \quad \overline{\Lambda}_{aj}^{i} = -b_{ba}^{n} \Lambda_{n}^{ik} \Lambda_{kj}^{b}.$$
(3.13)

Дифференциальные уравнения (3.3, 3.6) с использованием соотношений (3.11, 3.13) можно переписать в виде:

$$\begin{split} d\overline{\Lambda}^n_{ij} + \overline{\Lambda}^n_{ij}(\overline{\omega}^0_0 + \overline{\omega}^n_n) - \overline{\Lambda}^n_{ik}\overline{\omega}^k_j - \overline{\Lambda}^n_{kj}\overline{\omega}^k_i &= \overline{\Lambda}^n_{ijk}\overline{\omega}^k_0 \,, \\ d\overline{b}^n_{ab} + \overline{b}^n_{ab}(\overline{\omega}^0_0 + \overline{\omega}^n_n) - \overline{b}^n_{ac}\overline{\omega}^c_b - \overline{b}^n_{cb}\overline{\omega}^c_a &= \overline{b}^n_{abk}\overline{\omega}^k_0 \,, \\ d\overline{b}^n_{\rho\varphi} + \overline{b}^n_{\rho\varphi}(\overline{\omega}^0_0 + \overline{\omega}^n_n) - \overline{b}^n_{\rho\lambda}\overline{\omega}^\lambda_\varphi - \overline{b}^n_{\lambda\varphi}\overline{\omega}^\lambda_\rho &= \overline{b}^n_{\rho\varphi k}\overline{\omega}^k_0 \,, \end{split}$$

где

$$\overline{\Lambda}_{ijk}^n = \Lambda_{ti}^n \Lambda_n^{ts} \Lambda_n^{ts} \Lambda_{sjk}^n, \ \overline{b}_{abk}^n = b_{ca}^n b_n^{cd} b_{dbk}^n, \ \overline{b}_{\rho\phi k}^n = b_{\lambda\rho}^n b_n^{\lambda\mu} b_{\mu\phi k}^n. \ \ (3.14)$$

Из соотношений (3.5, 3.8, 3.9, 3.13, 3.14) имеем:

$$\overline{\Lambda}_k = \overline{\Lambda}_n^{ij} \overline{\Lambda}_{ijk}^n = -\Lambda_k \,, \ \overline{E}_k = \overline{b}_n^{\ \beta \alpha} \overline{b}_{\alpha\beta k}^n = -E_k \,, \overline{H}_k = \overline{\Lambda}_k + \overline{E}_k = -H_k \,.$$

Формы Пфаффа $\overline{\omega}_{\bar{I}}^{\overline{K}}$ служат формами инфинитезимального перемещения тангенциального репера { $\xi_{\bar{I}}$ }:

$$\xi_{0} = \frac{1}{n+\sqrt{H}} [A_{0}, A_{1}, ... A_{n-1}], \quad \xi_{n} = \frac{1}{n+\sqrt{H}} [A_{n}, A_{1}, ... A_{n-1}],$$

$$\xi_{i} = \frac{1}{n+\sqrt{H}} \sum_{j=1}^{m} \Lambda_{ij}^{n} [A_{0}, A_{1}, ... A_{j-1}, A_{n}, A_{j+1}, ... A_{n-1}],$$

$$\xi_{a} = \frac{1}{n+\sqrt{H}} \sum_{b=m+1}^{p} b_{ba}^{n} [A_{0}, A_{1}, ... A_{m}, A_{m+1}, ... A_{b-1}, A_{n}, A_{b+1}, ... A_{n-1}],$$

$$\xi_{\rho} = \frac{1}{n+\sqrt{H}} \sum_{\varphi=p+1}^{n-1} b_{\varphi\rho}^{\rho} [A_{0}, A_{1}, ... A_{m}, A_{m+1}, ... A_{\varphi-1}, A_{n}, A_{\varphi+1}, ... A_{n-1}].$$
(3.15)

Таким образом, справедлива

Теорема 2. С регулярной гиперполосой ${}^{p}H_{m} \subset P_{n}$ ассоциируются два двойственных между собой проективных пространства $P_{n}(V_{m})$ и $\overline{P}_{n}(V_{m})$ (относительно инволютивного преобразования структурных форм по закону (3.11)) и двойственный образ ${}^{p}\overline{H}_{n}$, определяемый уравнениями (3.12) (относительно тангенциального репера (3.15)).

Список литературы

- 1. Вагнер В. В. Теория поля локальных гиперполос //Тр. семинара по векторному и тензорному анализу. 1950. Вып. 8. С. 197—272.
- 2. *Малаховский В. С.* Введение в теорию внешних форм: учебное пособие. Калининград, 1978. Ч. 1.
- 3. *Попов Ю.И.* Общая теория регулярных гиперполос: учебное пособие. Калининград, 1983.
- 4. *Столяров А.В.* Двойственная теория оснащенных многообразий: монография. 2-е изд. Чебоксары, 1994.

Yu. Popov

REGULAR HYPESTRIPS PH_m OF PROJECTIVE SPACE

A hiperstrip ${}^{p}H_{m}$ in the projective space is given and existence theorem is proved. Dual image for the hiperstrip ${}^{p}H_{m}$ is constructed.