- 12. *Gardner R.B.* Invariants of pfaffian systems // Trans. Amer. Math. Soc. 1967. Vol. 126. № 3. P. 514-533.
- 13. Stscherbakov R.N. Grundlagen der Methoden der äußeren Differentialformen und der geradlinigen Differentialgeometrie. Tomsk, 1973.

В. В. Кайзер

СПЕЦИАЛЬНЫЕ РАСПРЕДЕЛЕНИЯ НА ГРАССМАНОВОМ МНОГОБРАЗИИ (I)

Многие понятия дифференциальной геометрии прямолинейных конгруэнций и комплексов могут быть распространены на случай неинтегрируемых гладких распределений на грассмановом многообразии всех прямых проективного пространства. Исследуются специальные двумерные и трехмерные распределения, называемые неголономными конгруэнциями и неголономными комплексами. В 1-й части статьи сформулированы результаты.

УДК-514.76

О ПРОДОЛЖЕНИИ ГЛАДКОГО МНОГООБРАЗИЯ

В.В. Корниевский

(Томский политехнический университет)

Дифференциально-геометрические исследования, проводимые контравариантными методами, широко используют неголономные реперы. Большая же часть исследований в рамках ковариантной методики использует только голономные реперы, т.е. изучает структуры в расслоениях, присоединенных к главным расслоенным пространствам голономных кореперов. В данной работе предлагается принцип неголономного продолжения гладкого многообразия и вычисления структурных форм расслоений неголономных кореперов.

1. Пусть M - n-мерное гладкое многообразие. Это значит [2, с. 12], что M есть хаусдорфово пространство с фиксированным полным атласом (V_{α} , h_{α}), т.е. $V_{\alpha} \subset M$ покрывают M, а h_{α} : $V_{\alpha} \to h_{\alpha}(V_{\alpha}) \subset R_n$ - координатные гомеоморфизмы. Ввиду гладкости M, h_{α} являются диффеоморфизмами. На хаусдорфовом многообразии [3, с.263] не существует диффеенцирований кроме определяемых векторными полями в виде действия линейных дифференциальных операторов этих полей. Если \overline{X} - векторное поле, ϕ_t - его локальная однопараметрическая группа

локальных преобразований, а f - скалярная функция, то производной функции f по полю \overline{X} является функция

$$\overline{X}f = \lim_{t \to 0} \frac{1}{t} (\phi_t \circ f - f).$$

В R_n , являющимся хаусдорфовым пространством, для векторных полей e_i канонического базиса базисные дифференцирования определяются формулами $\overline{e_i} f = \frac{\partial f}{\partial x^i}$. Если $\{\overline{a_i}\}$ другой репер в R_n , то

$$\overline{a_i} = a_i^j(x)\overline{e_j}, \det ||a_i^j|| \neq 0, \overline{a_i}f = a_i^j\overline{e_j}f = a_i^j\frac{\partial f}{\partial x^j}.$$

Пусть $\{\overline{X_i}\}$ - гладкое поле репера на М. Дифференцирование относительно поля голономного репера назовем голономным, относительно неголономного поля репера неголономным дифференцированием. Последнее в литературе известно как пфаффово дифференцирование. Дифференцирование относительно поля натурального репера $\{\overline{\partial_i} = \frac{\partial}{\partial x^i}\}$, векторы которого при изоморфизме T_x Х

и R_n соответствуют векторам канонического базиса в R_n , является, как известно, обычным частным дифференцированием.

2. Рассмотрим множество координатных гомеоморфизмов областей, центрированных в точке $x \in M$, на окрестности нулевой точки R_n . Диффеоморфизмы h_α и h_β называются P-эквивалентными, если [3, c.241] $h_\alpha^{-1}(0) = h_\beta^{-1}(0) = x$ и в $V_\alpha \cap V_\beta$ существуют окрестность и гладкое поле репера $\{\overline{X}_i\}$ на этой окрестности, такие, что координатные функции $y^i = h_\alpha^i(y)$ и $z^i = h_\beta^i(z)$ имеют в точке x равными все производные до порядка p=1,2,... Эти условия инвариантны относительно замены поля реперов и действительно [3] определяют отношение эквивалентности. Классы эквивалентности по данному отношению называются ркореперами. Каждый корепер в точке x определяется по данному полю репера $\{\overline{X}_i\}$ вещественными значениями $x_{i_1}^j, x_{i_2i_1}^j, ..., x_{i_pi_{p-1}...i_1}^j$ в точке x производных

$$\overline{X}_{i_1}y^j, \overline{X}_{i_2}(\overline{X}_{i_1}y^j) = \overline{X}_{i_2}\overline{X}_{i_1}y^j, ..., \overline{X}_{i_p}(\overline{X}_{i_{p-1}} ... \overline{X}_{i_1}y^j) = \overline{X}_{i_p}\overline{X}_{i_{p-1}} ... \overline{X}_{i_1}y^j,$$

При этом, так как h_{α} - диффеоморфизм, $\det \|x_{i_1}^j\| \neq 0$. Если репер $\{\overline{X_i}\}$ голономный, то получаем голономные кореперы, если репер $\{\overline{X_i}\}$ неголономный, то возникают неголономные кореперы. Компоненты голономных кореперов симметричны по нижним индексам, тогда как компоненты неголономных кореперов, вообще говоря, такой симметрией не обладают.

3. Пусть произвольная точка $x \in V_{\alpha}$ такая, что $h_{\alpha}^{i}(x) = x_{\alpha}^{i}$ не равны нулю одновременно. Рассмотрим композиции $\varphi_{\alpha}(x) = tr(x) \circ h_{\alpha}(x)$, где tr(x) - отображение трансляции пространства R_{n} , переводящее точку x в нулевую точку. Получено множество диффеоморфизмов φ_{α} областей $V_{\alpha}^{'}$, содержащих x, на окрестности нулевой точки R_{n} . Невырожденная матрица Якоби $\left\| \frac{\partial \varphi_{\alpha}^{i}}{\partial x^{j}} \right\|$ является

матрицей дифференциала φ_{α^*} . Поскольку дифференциал не зависит от выбора карт [2, с.207], содержащих x и $\varphi_{\alpha}(x)$, будем говорить о дифференциале φ_{α} . Пусть a_i (t) - локальные однопараметрические группы локальных преобразований векторных полей натурального репера. Они порождают группы $\varphi(a_i(t))$. Векторные поля $\overline{X}_i = \frac{\partial \varphi^j}{\partial x^i} \overline{\partial}_j$ порождаются однопараметрическими группами

преобразований $\varphi(a_i(t))_* = \varphi(a_i(t)) \circ a_i(t) \circ \varphi(a_i(-t))$. Эти векторные поля линейно независимы в некоторой окрестности точки x и, следовательно, определяют поле репера $\{\overline{X_i}\}$. Коммутатор полей $\overline{X_i}$ и $\overline{X_j}$ вычисляется по формуле

$$\left[\overline{X}_{i}, \overline{X}_{j}\right] = \left[\frac{\partial \phi^{k}}{\partial x^{i}} \overline{\partial}_{k}, \frac{\partial \phi^{e}}{\partial x^{i}} \overline{\partial}_{e}\right] = \left(\frac{\partial \phi^{e}}{\partial x^{j}} \cdot \frac{\partial^{2} \phi^{t}}{\partial x^{e} \partial x^{i}} - \frac{\partial \phi^{e}}{\partial x^{i}} \cdot \frac{\partial^{2} \phi^{t}}{\partial x^{e} \partial x^{j}}\right)^{*} \phi_{t}^{k} \overline{X}_{k}.$$

Здесь φ_t - элементы обратной матрицы к матрице преобразования φ_* . Величины в правой части представляют собой, вообще говоря, отличные от нуля кососимметричные по нижним индексам функции точки многообразия, т.е. $\{\overline{X_i}\}$ поле неголономного репера. Дифференцирование относительно репера $\{\overline{X_i}\}$ определяется формулой

$$\overline{X_i}f = \lim_{t \to 0} \frac{1}{t} (\varphi(a_i(t))_* f - f),$$

т.е. [2, с. 280] является дифференцированием Ли.

Теперь, в соответствии с пунктом 2, можно вычислить компоненты корепера любого порядка. Для примера вычислим компоненты 2-корепера. Имеем

$$\begin{split} &\left(\overline{X}_{i_{1}}\,\phi^{j}\right)_{x} = \left[\left(\frac{\partial\phi^{e}}{\partial x^{i_{1}}}\overline{\partial}_{e}\right)\phi^{j}\right]_{x} = \left(\frac{\partial\phi^{e}}{\partial x^{i_{1}}}\frac{\partial\phi^{j}}{\partial x^{e}}\right)_{x},\\ &\left(\overline{X}_{i_{2}}\,\overline{X}_{i_{1}}\,\phi^{j}\right)_{x} = \left[\left(\frac{\partial\phi^{k}}{\partial x^{i_{2}}}\overline{\partial}_{k}\right)\left(\frac{\partial\phi^{e}}{\partial x^{i_{1}}}\frac{\partial\phi^{j}}{\partial x^{e}}\right)\right]_{x} = \\ &= \left(\frac{\partial\phi^{k}}{\partial x^{i_{2}}}\cdot\frac{\partial^{2}\phi^{e}}{\partial x^{k}\partial x^{i_{1}}}\frac{\partial\phi^{j}}{\partial x^{e}} + \frac{\partial\phi^{k}}{\partial x^{i_{2}}}\frac{\partial\phi^{e}}{\partial x^{i_{1}}}\cdot\frac{\partial^{2}\phi^{j}}{\partial x^{k}\partial x^{e}}\right)_{x}. \end{split}$$

Полученные компоненты $x_{i_2 i_1}^j$ не симметричны по нижним индексам, т.е. 2-корепер неголономный.

4. Таким образом, в некоторой окрестности V точки $x \in M$ найдено поле неголономного репера $\{\overline{X_i}\}$, компоненты объекта неголономности которого имеют вид

$$b_{i\,j}^{\,k} \!=\! \! \left(\frac{\partial \phi^{\,e}}{\partial \,x^{\,i}} \!\cdot\! \frac{\partial^{\,2} \,\phi^{\,s}}{\partial \,x^{\,e} \partial \,x^{\,j}} \!-\! \frac{\partial \phi^{\,e}}{\partial \,x^{\,j}} \!\cdot\! \frac{\partial^{\,2} \,\phi^{\,s}}{\partial \,x^{\,e} \partial \,x^{\,i}} \right) \stackrel{*}{\phi}_{s}^{\,k}.$$

Для сопряженного реперу $\{\overline{\mathbf{X}}_{\mathbf{i}}\}$ корепера $\{\boldsymbol{\varpi}^i\}$ выполняются [4, с.66] соотношения

$$D\varpi^{i} = \frac{1}{2}b^{i}_{jk}\varpi^{j} \wedge \varpi^{k},$$

справедливые в окрестности $V \subset M$. Структурные уравнения расслоения ${}^*\overline{H}^p(M)$ неголономных р-кореперов, как частный случай главного расслоенного пространства, известны [3]. Будем искать формы расслоения ${}^*\overline{H}^p(M)$ путем нахождения зависимости между ними и соответствующими формами расслоения ${}^*H^p(M)$ голономных кореперов. Строение последних хорошо известно [4, с. 49]. Пусть Θ - структурные формы ${}^*H^p(M)$, а ω - структурные формы ${}^*\overline{H}^p(M)$. Через Θ (δ) и ω (δ) обозначим значения этих форм при фиксации точки x. Из того, что $\varpi_i^j(\delta) = \Theta_i^j(\delta)$ и являются формами алгебры Ли группы GL(U,R) преобразований в T_x M, вытекает, что в V имеет место $\varpi_i^j = \Theta_i^j + C_{ik}^j$ ϖ^k , где C_{ik}^j некоторые функции точки многообразия. Найдем формы ϖ_i^j ,, исходя из деривационных формул $D\overline{X}_j = \varpi_j^i \overline{X}_i$ репера $\{\overline{X}_i\}$, как линейного репера в касательном расслоении TM. Так как \overline{X}_i : $M \to TM$, то $d\overline{X}_i \subset T(TM)$. Как известно, $TM = (M, \overline{U}, GL(U,R))$. Следовательно π^{-1} ($V \subset M$) = $V \times GL(U,R)$. Пусть, для определенности, π^{-1} (x) = e - единичный элемент GL(U,R). Тогда

$$d\overline{X_i}\Big|_x \subset T_{(x,e)}(TM).=T_xM+T_eGL(U,R).$$

Ввиду изоморфизма алгебры Ли группы GL(U,R) и T_e GL(U,R), составляющая из T_e GL(U,R) имеет координаты $\Theta_i^{\ j}(\delta)$. Тогда на $V\subset M$ имеем

$$d\overline{X_i} = (\partial_i^{\varpi} \overline{X}_i) \varpi^j + \Theta_i^j \overline{X}_j.$$

Пфаффова производная ∂_{j}^{ϖ} для рассматриваемого репера является производной Ли. Таким образом,

$$\partial_{\,j}^\varpi \overline{X}_i \!=\! \left\lceil \overline{X}_j, \overline{X}_i \right\rceil \!=\! b_{i\,j}^k \, \overline{X}_k.$$

и, следовательно, деривационные формулы имеют вид

$$d\overline{X_i} = (\Theta_i^j + b_{ik}^j \overline{\omega}^k) \overline{X}_k$$
.

Итак, $\varpi_i^j = \Theta_i^j + b_{ik}^j \varpi^k$. Непосредственным дифференцированием находим

$$D\varpi_{i}^{j} = \varpi_{i}^{k} \wedge \varpi_{k}^{j} + \Delta b_{ik}^{j} \wedge \varpi^{k} + \varpi^{k} \wedge \Theta_{ik}^{j}.$$

Здесь формы Δb_{ik}^{j} имеют вид ковариантного дифференциала b_{jk}^{i} по формам $\boldsymbol{\varpi}_{i}^{k}$. Так как $\{\ b_{ik}^{i}\ \}$ - GL(U,R) - тензор, получаем

$$D\varpi_i^j = \varpi_i^k \wedge \varpi_k^j + \varpi^k \wedge \varpi_{ik}^j.$$

Здесь несимметричные по нижним индексам формы $\varpi_{ik}^j = \Theta_{ik}^j + b_{ike}^j \varpi^e$ есть структурные формы ${}^*\overline{H}^p(M)$, а b_{ike}^j выражаются через объект неголономности и его первое продолжение. Формы ϖ_{jke}^i находятся дифференцированием ϖ_{ik}^j и т.д. Продолжение процесса приводит к соотношениям

$$\varpi \rightarrow \varpi^{i}_{j_{1}...j_{p}} = \Theta^{i}_{j_{1}...j_{p}} + b^{i}_{j_{1}...j_{p}k} \varpi^{k}$$
,

где $b^i_{j_1...j_{p^k}}$ охватывается дифференциальным продолжением порядка р объекта неголономности репера.

Библиографический список

- 1. *Корниевский В.В.* О структурных формах расслоения полуголономных кореперов. Сибирская геометрическая конференция: Тез. докл. Томск: Томск. пед-ин-т, 1995. С. 31-34.
- 2. *Постников М.М.* Лекции по геометрии. Гладкие многообразия. М.: Наука, 1987.344 с.
- 3. *Лумисте Ю.Г.* Матричное представление полуголономной дифференциальной группы и структурные уравнения расслоения р-кореперов // Тр.геом.семинара. М.: ВИНИТИ, 1974. Т.5. С. 239-257.
- 4. *Евтушик Л.Е., Лумисте Ю.Г., Остиану Н.М., Широков А.П.* Дифференциально-геометрические структуры на многообразиях // Проблемы геометрии. М.: ВИНИТИ, 1979. Т.9. С. 5-246.

V.V.Kornievskiy

ABOUT CONTINUATION OF SMOOTH MANIFOLD

In article a principle unholonomic of continuation of smooth manifold and calculation of the structural forms of boundle unholonomic coreper is stated.